The CHiME-8 DASR Task

Generalizable and Array Agnostic Distant Automatic Speech Recognition and Diarization

> Samuele Cornell¹ Taejin Park² He Huang² Christoph Boeddeker³ Matthew Wiesner⁴ Matthew Maciejewski⁴ Xuankai Chang¹ Paola Garcia⁴ Shinji Watanabe¹

¹Carnegie Mellon University, USA ²NVIDIA, USA ³Paderborn University, Germany ⁴Johns Hopkins University, USA

The CHiME-8 DASR Task

Generalizable and Array Agnostic Distant Automatic Speech Recognition and Diarization

> Samuele Cornell¹ Taejin Park² He Huang² Christoph Boeddeker³ Matthew Wiesner⁴ Matthew Maciejewski⁴ Xuankai Chang¹ Paola Garcia⁴ Shinji Watanabe¹

¹Carnegie Mellon University, USA ²NVIDIA, USA ³Paderborn University, Germany ⁴Johns Hopkins University, USA

Same end goal as in the past CHiME-6 and CHiME-7 DASR:

• joint diarization and transcription of an unsegmented meeting scenario

Same end goal as in the past CHiME-6 and CHiME-7 DASR:

• **joint diarization and transcription** of an **unsegmented meeting** scenario with (<u>possibly</u>) multiple recording devices.

Participants have to produce transcriptions for each speaker with <u>utterance-level segmentation</u>.

Participants have to produce transcriptions for each speaker with <u>utterance-level segmentation</u>.

- The predictions are submitted in the form of a <u>JSON file as depicted here</u> with:
 - start and end time of each utterance.
 - speaker label
 - words uttered
 - Session/meeting id

Hypothesis "end time": "11.350", "start time": "11.010", "words": "so", "speaker": "spk1", "session id": "S05" }, "end time": "14.150", "start time": "12.000", "words": "Where is", "speaker": "spk2", "session id": "S05"

Foster research towards **robust ASR+diarization**, that can generalize to:

- 1. arbitrary number of speakers
- 2. diverse settings (e.g. more formal vs informal style conversation)
- 3. wide-variety of acoustic scenarios

Foster research towards **robust ASR+diarization**, that can generalize to:

- 1. arbitrary number of speakers
- 2. diverse settings (e.g. more formal vs informal style conversation)
- 3. wide-variety of acoustic scenarios
- 4. different recording devices configurations (incl. ad-hoc array networks and multi-room environments)

Circular array device topology as used in DiPCo

Figure 2: Configuration of the 7-microphone array.

NOTSOFAR1 recording devices

Foster research towards **robust ASR+diarization**, that can generalize to:

- 1. different recording devices configurations (incl. ad-hoc array networks and multiroom environments)
 - Highly interesting and practical problem
 - No need for proprietary devices (more scalable and widely applicable)
 - Multi-device meeting transcription

Fills a gap in current challenges/evaluation benchmarks for meeting transcription, which mostly focus on one domain:

- 1. AMI, ICSI
- 2. CHiME-5 & 6, DiPCo
- 3. Alimeeting
- 4. In-Car Multi-Channel Automatic Speech Recognition (ICMC-ASR) Challenge
- 5. Ego4D
- 6. CHiME-8 NOTSOFAR-1 (Task 2, next presentation)

Fills a gap in **current challenges/evaluation benchmarks for meeting transcription**, which **mostly focus on one domain**:

- 1. AMI, ICSI
- 2. CHiME-5 & 6, DiPCo
- 3. Alimeeting
- 4. In-Car Multi-Channel Automatic Speech Recognition (ICMC-ASR) Challenge
- 5. Ego4D
- 6. CHiME-8 NOTSOFAR-1 (Task 2, next presentation)

Similar efforts were done for diarization (e.g. DIHARD, VoxConverse challenges) and non long-form ASR (🚱 Speech Robust Bench)

- Two "types" of datasets
 - 4 "Core" datasets (train, dev and eval):
 - CHiME-6
 - DiPCo
 - Mixer 6 Speech

- Two "types" of datasets
 - 4 "Core" datasets (train, dev and eval):
 - CHiME-6
 - DiPCo
 - Mixer 6 Speech
 - NOTSOFAR1

DASR and NOTSOFAR1 Tasks

We have a scenario (NOTSOFAR1 dataset) in common and agreed together to have same text normalization and same rules.

- Every submission to DASR also accounts for a valid submission to the NOTSOFAR1 task.
 - It is one of the four scenarios in CHiME-8 DASR
- Shared scientific goal is to **compare design choices and performance between**:
 - domain specialized systems (NOTSOFAR1 task)
 - generalist systems (DASR task)

DASR and NOTSOFAR1 Tasks

We have a scenario (NOTSOFAR1 dataset) in common and agreed together to have same text normalization and same rules.

- Every submission to DASR also accounts for a valid submission to the NOTSOFAR1 task.
 - It is one of the four scenarios in CHiME-8 DASR
- Shared scientific goal is to **compare design choices and performance between**:
 - domain specialized systems (NOTSOFAR1 task)
 - generalist systems (DASR task)

Answer might not be obvious, domain-agnostic approaches:

- could generalize better to evaluation set (less biased to the training data)
- their design could allow to leverage more diverse training data
 - E.g. array-agnostic front-end for diarization or separation (e.g. FasNet-TAC, multi-channel EEND-EDA)

- Two "types" of datasets
 - 4 "Core" datasets (train, dev and eval):

Scenario	Train (hh:mm)	Dev (hh:mm)	
CHIME-6	40:05	4:27	
DiPCo	1:12	1:31 8:56	
Mixer 6	6:13 (~63 annotated only for one speaker)		
NOTSOFAR-1	14:43	13:25	

- Two "types" of datasets
 - 4 "Core" datasets (train, dev and eval):

Scenario	Train (hh:mm)	Dev (hh:mm)	
CHIME-6	40:05	4:27	
DiPCo	1:12	1:31	
Mixer 6	6:13 (~63 annotated only for one speaker)	8:56	
NOTSOFAR-1	14:43	13:25	

• External datasets that participants can use for training and validation

- External datasets that participants can use for training and validation
 - Full list available at https://www.chimechallenge.org/current/task1/rules
 - Real meetings: AMI
 - Clean speech datasets: LibriSpeech, WSJ
 - Noise datasets: FSD50k, SINS
 - Speaker verification: VoxCeleb1&2
 - Room impulse responses (RIR): SLR28, MUSAN
 - Synthetic datasets: NOTSOFAR-1 simulated dataset, WHAMR
 - <u>Participants could propose new ones up to 20 March 2024</u>

Core Datasets: Diverse Scenarios

Scenario	Setting	Num. Speakers	Recording Setup	Multi-Room	Meeting Duration
CHiME-6	dinner party	4	6 linear arrays (4 mics each)	Yes	> 2h
DiPCo	dinner party (more formal)	4	5 circular arrays (7 mics each)	No	20-30 mins
Mixer 6 Speech	1-to-1 interview	2	10 heterogeneous devices	No	~15 mins
NOTSOFAR1	office meeting	4-8	1 circular array device (7 mics)	No	~6 mins

Figures: Audacity log mel-scaled spectrograms (2048 window size)

Task Rules

Rationale: enforce participants to create just one system for all core scenarios

- **Domain identification is prohibited** (one system must tackle all three core scenarios)
 - <u>Participants could not make any assumption about the microphone configuration</u> used.
 - This would account for domain identification.
 - Systems must estimate the number of speakers automatically (not based on domain)

Task Rules

Rationale: enforce participants to create just one system for all core scenarios

- **Domain identification is prohibited** (one system must tackle all three core scenarios)
 - <u>Participants could not make any assumption about the microphone configuration used.</u>
 - This would account for domain identification.
 - Systems must estimate the number of speakers automatically (not based on domain)

Participants can use a plethora of external pretrained models including:

- Large-scale weakly supervised (e.g. Whisper or OWSM) ASR models
- Large-scale self-supervised models (e.g. WavLM, HuBERT etc).
- Speaker ID Embeddings models (e.g. ECAPA-TDNN)

Full detailed rules, including allowed pre-trained models available at https://www.chimechallenge.org/current/task1/rules

Challenge Tracks

We proposed two tracks.

In both, participants are tasked to perform ASR and diarization (utterance-level) on meetings from the various core datasets evaluation sets.

These tracks differ only by the allowed external models:

1. Constrained LM track

1. Participants can use any resource among the training material (incl. external datasets) for LM training.

2. Unconstrained LM track

1. Participants can ALSO use external large language models (LLMs) e.g. (Llama 2, OlMo, TinyLlama)

Ranking Metric

Systems are ranked according to timeconstrained minimum permutation word error rate (tcpWER) as proposed in MeetEval.

• Evaluates both recognition accuracy, speaker attribution and segmentation

Ranking Metric

Systems are ranked according to timeconstrained minimum permutation word error rate (tcpWER) as proposed in MeetEval.

- Evaluates both recognition accuracy, speaker attribution and segmentation
- Does not require forced-alignment
 - Uses character-based pseudo alignment
 - Word duration based on character count plus utterance boundaries (available)
 - Allows for a collar (we use 5 seconds)

Image from: von Neumann, Thilo, et al. "Meeteval: A toolkit for computation of word error rates for meeting transcription systems." *CHiME Workshop* 2023.

Figure 2: Visualization of the different pseudo-word-level annotation strategies. The collar is visualized as gray boxes and kept short for better visualization. The character-based annotation strategy correlates best with the actual pronunciation time.

Ranking Metric

Since we care about domain generalization, we use the **tcpWER macro-average** across all the 4 core scenarios as the final metric

- Teams are ranked based on the best out of 3 submissions (on eval) for each track
 - 3 submissions to allow to explore different strategies including less computationally heavy ones.

Last year most participants relied on ensemble methods to boost the performance:

Ensembling (multiple choice, add yours if you want).

7 responses

This year we have a jury special award for the most efficient and innovative system.

This year we have a jury special award for the most efficient and innovative system.

- The jury will be nominated by the CHiME Committee (so not most of us DASR organizers).
- Systems will be ranked using their description paper according to:
 - 1. <u>Practicality/efficiency</u>
 - 2. <u>Innovation/originality</u>
 - 3. Effectiveness

Examples from past CHiME challenges include:

- Guided Source Separation (GSS) (CHiME-5) [1]
- Target speaker VAD (TS-VAD) (CHiME-6) [2]
- BLSTM supported GEV beamformer (CHiME-3) [3]

Boeddeker, Christoph, et al. "Front-end processing for the CHiME-5 dinner party scenario." *CHiME5 Workshop* 2018.
 Medennikov, Ivan, et al. "Target-speaker voice activity detection: a novel approach for multi-speaker diarization in a dinner party scenario." Interspeech. 2020
 Heymann, Jahn, et al. "BLSTM supported GEV beamformer front-end for the 3rd CHiME challenge." ASRU, 2015.

We have **two baseline systems**:

- 1. ESPNet: https://github.com/espnet/espnet/tree/master/egs2/chime8_task1
 - Updated last year baseline

We have two baseline systems:

- 1. ESPNet: https://github.com/espnet/espnet/tree/master/egs2/chime8_task1
 - Updated last year baseline
- 2. NVIDIA NeMo: https://github.com/chimechallenge/C8DASR-Baseline-NeMo
 - From NVIDIA NeMo team last year submission

We have two baseline systems:

- 1. ESPNet: https://github.com/espnet/espnet/tree/master/egs2/chime8_task1
 - Updated last year baseline
- 2. NVIDIA NeMo: https://github.com/chimechallenge/C8DASR-Baseline-NeMo
 - From NVIDIA NeMo team last year submission

In addition, USTC-NERCSLIP open sourced their extremely effective NSD-MS2S diarization system

- Key component that allowed to rank first in last year CHiME-7 DASR challenge.
- Available at https://github.com/liyunlongaaa/NSD-MS2S

Data Preparation & Download

We also provide a *chime-utils* toolkit to allow for **easy data preparation and downloading** as well as scoring:

https://github.com/chimechallenge/chime-utils

- Hopefully its usefulness will extend beyond this challenge
 - Automatic download and convert CHiME-6, DiPCo and NOTSOFAR-1 to have same structure for easy parsing
- It also supports data preparation recipes for DASR for several toolkits including ESPNet, K2, Kaldi, NeMo

Both consists in an <u>array topology agnostic meeting transcription pipeline</u> consisting of:

- Multi-channel diarization
- Target speaker separation
 - Envelope variance based channel selection
 - Guided source separation (GSS)
- Monaural ASR

Figure 1: ESPNet and NeMo baseline systems basic overview.

Both consists in an <u>array topology agnostic meeting transcription pipeline</u> consisting of:

- Multi-channel diarization
- Target speaker separation
 - Envelope variance based channel selection
 - Guided source separation (GSS)
- Monaural ASR

Figure 1: ESPNet and NeMo baseline systems basic overview.

Multi-channel diarization component

- ESPNet
 - Pyannote diarization pipeline extended to multiple channels
- NeMo
 - MIMO WPE Dereverberation
 - Microphone channel clustering
 - VAD & microphone channel ensembling
 - speaker embedding extraction and clustering
 - Multi scale diarization decoder (TS-VAD like model)

Much lower participation compared to last year CHiME-7 (from 9 down to 3 teams)

- Participants split between the three tasks this year which were highly related
 - Overall CHiME participation was up (+4 compared to CHiME-7)

Much lower participation compared to last year CHiME-7 (from 9 down to 3 teams)

- Participants split between the three tasks this year which were highly related
 - Overall CHiME participation was up (+4 compared to CHiME-7)
- 1. Constrained LM track
 - 3 submissions: STCON, NTT and a team which was anonymized due to poor performance
 - Quality not quantity ? STCON and NTT have submitted remarkable capable systems

Much lower participation compared to last year CHiME-7 (from 9 down to 3 teams)

- Participants split between the three tasks this year which were highly related
 - Overall CHiME participation was up (+4 compared to CHiME-7)
- 1. Constrained LM track
 - 3 submissions: STCON, NTT and a team which was anonymized due to poor performance
 - Quality not quantity ? STCON and NTT have submitted remarkable capable systems

Much lower participation compared to last year CHiME-7 (from 9 down to 3 teams)

- Participants split between the three tasks this year which were highly related
 - Overall CHiME participation was up (+4 compared to CHiME-7)

1. Constrained LM track

- 3 submissions: STCON, NTT and a team which was anonymized due to poor performance
- Quality not quantity ? STCON and NTT have submitted remarkable capable systems

2. Unconstrained LM track

- Only STCON submitted a system
 - However, improvement was marginal w.r.t. Constrained LM

3. Jury Award

• Considered only together with NOTSOFAR-1 (not enough participants)

NTT team however made significant efforts in producing also a more practical system and report the real time factor (RTF).

Challenge Results

Constrained LM Results on Dev Set, tcpWER (%) for each scenario.

Scenarios

2

macro

chime6 dipco

mixer6

notsofar1

Challenge Results

Constrained LM Results on Dev Set, tcpWER (%) for each scenario.

Constrained LM Results on Eval Set, tcpWER (%) for each scenario.

 \mathbf{X} Congrats to STCON

Challenge Results

Constrained LM Results on Dev Set, tcpWER (%) for each scenario.

Constrained LM Results on Eval Set, tcpWER (%) for each scenario.

 \mathbf{X} Congrats to STCON

NOTSOFAR-1 Task 2 Results

Remarkably, STCON and NTT systems place also 2° and 3° in the NOTSOFAR-1 Task 2 challenge, despite being array and domain agnostic

C8+C7 Results

STCON and NTT systems are able to push the performance further on CHiME-6, DiPCo and Mixer 6 despite having to deal also with the highly different NOTSOFAR-1 scenario

C8+C7 Results

Results on CHiME-6 scenario, past three CHiME Challenge editions.

• DER (%) is computed w.r.t. JSON annotation and with 250ms collar

Results on CHiME-6 scenario, past three CHiME Challenge editions.

Results on CHiME-6 scenario, past three CHiME Challenge editions.

Results on CHiME-6 scenario, past three CHiME Challenge editions.

CHIME vs Current Prod Systems

CHiME vs Current Prod Systems

Comparison with Azure Batch Transcription, NOTSOFAR-1 S32000107

NOTE: Azure results are single channel as diarization appears to be not supported for multi-channel

- Random single session from
 NOTSOFAR-1 eval set
 - Easiest scenario for singlechannel systems

CHiME vs Current Prod Systems

Comparison with Azure Batch Transcription, NOTSOFAR-1 S32000107

Gap with baselines is less pronounced for cpWER

- 1. Guided Source Separation (GSS) still reigns supreme for front-end processing
 - STCON, NTT and USTC (NOTSOFAR-1 Task) use it as the main separation component

- 1. Guided Source Separation (GSS) still reigns supreme for front-end processing
 - STCON, NTT and USTC (NOTSOFAR-1 Task) use it as the main separation component

(Target) speech separation with real world data is hard, even when reasonably matched synthetic data is available and array geometry is known (NOTSOFAR-1 scenario)

- 1. Guided Source Separation (GSS) still reigns supreme for front-end processing
 - STCON, NTT and USTC (NOTSOFAR-1 Task) use it as the main separation component

(Target) speech separation with real world data is hard, even when reasonably matched synthetic data is available and array geometry is known (NOTSOFAR-1 scenario)

- <u>No team except STCON performed frontend + ASR E2E fine-tuning</u>
 - This model however works best when used for GSS refinement (G-TSep).
 - STCON also tried to use continuous source separation (CSS) but failed to achieve good results.

- 1. Guided Source Separation (GSS) still reigns supreme for front-end processing
 - STCON, NTT and USTC (NOTSOFAR-1 Task) use it as the main separation component

(Target) speech separation with real world data is hard, even when reasonably matched synthetic data is available and array geometry is known (NOTSOFAR-1 scenario)

- <u>No team except STCON performed frontend + ASR E2E fine-tuning</u>
 - This model however works best when used for GSS refinement (G-TSep).
 - STCON also tried to use continuous source separation (CSS) but failed to achieve good results.
- NTT team proposes some improvements over the baseline channel selection + GSS pipeline
 - Brouhuaha estimated C50 speech clarity index based channel selection
 - Spatial-prediction MWF instead of the MIMO MVDR

- 2. For diarization, all top teams use TS-VAD techniques
 - USTC (NOTSOFAR-1 Task), STCON and NTT all used NSD-MS2S [1]

Accurate speaker counting for TS-VAD initialization is crucial

- STCON: Wav2vec 2.0 speaker ID embeddings AED + ECAPA-TDNN
- NTT: multi-channel speaker counting

[1] Yang, Gaobin, et al. "Neural Speaker Diarization Using Memory-Aware Multi-Speaker Embedding with Sequence-to-Sequence Architecture." ICASSP, 2024.

- 3. Array/Domain-agnostic approaches (DASR) are competitive with domain specific ones (NOTSOFAR-1)
 - STCON and NTT systems achieve 2° and 3° place in NOTSOFAR-1 multi-channel track
 - USTC-NERCSLIP NOTSOFAR-1 Task 2 winning system is heavily based on their CHiME-7 submission

Limitations & Future Work

1. Generalization to unseen/unknown domains

- This is not really addressed, participants knew the domains in advance
- We need to collect new data for this purpose (expensive)

Limitations & Future Work

1. Generalization to unseen/unknown domains

- This is not really addressed, participants knew the domains in advance
- We need to collect new data for this purpose (expensive)
- 2. The entry bar is (still) very high
 - Building a SotA multi-channel ASR+diarization pipeline is difficult for small teams
 - Requires decent amount of computational & human resources
 - Baselines are still difficult to experiment with for students

Thank you and thanks to all participants

<u>Q&A also at the poster session</u> or email me: <u>samuele.cornell@ieee.org</u>

If you are interested in CHiME challenges and workshop, consider joining:

CHiME Slack

CHIME Mailing List

