CHiME-8 challenge: Task 3 MMCSG

Multi-Modal Conversations in Smart Glasses

Katerina Zmolikova, Simone Merello, Kaustubh Kalgaonkar, Ju Lin, Niko Moritz, Pingchuan Ma, Ming Sun, Honglie Chen, Antoine Saliou, Stavros Petridis, Christian Fuegen, Michael Mandel

MMCSG Dataset Multi-Modal Conversations in Smart Glasses

subset	number of recordings	total duration	average recording duration	number of speakers
train	172	8.5 h	3 min	49
dev	169	8.4 h	3 min	45
eval	189	9.4 h	3 min	44

Manual annotations

- Speech transcriptions
- Speaker activity

Aria Smart Glasses

Sensors & Modalities

Audio

- 7x spatialized microphones
- 48 kHz

Video

- RGB camera, 720x720, 15fps \rightarrow faces blurred
- 2x SLAM Cameras, 640x480
- 2x Eye Tracking Cameras, 320x240

IMU

- Accelerometer, 1kHz
- Gyroscope, 1kHz
- Barometer

Other

• GPS, Wifi, Bluetooth

Project Aria https://www.projectaria.com/

Research Challenges

TASK: Speaker-attributed speech recognition

Evaluation

Systems should provide, for each word:

- attribution to SELF/OTHER
- timestamp

1.62	1.62	2.18	2.18	2.74	2.74	3.3	5.53	6.10	6.10	6.65
SELF	OTHER	OTHER	OTHER	OTHER						
ehm	i	have	a	deer	oh	yeah	how	was	it	good

Multi-talker word error rate

	SELF: I had a beer
Reference:	OTHER: oh yes? how was it?
	SELF: good great!

Alignment:

REF	-	i	had	a	beer	oh	yes	how	was	it	good	great
HYP	<mark>ehm</mark>	i	<mark>have</mark>	a	deer	oh	yeah	how	was	it	good	-
	INS	CORR	SUB	CORR	SUB	ATTR	SUB ATTR	CORR	CORR	CORR	ATTR	DEL

Evaluation

Systems should provide, for each word:

- attribution to SELF/OTHER
- timestamp

The system had processed 6.10 seconds of the input recording when finished emitting the entire word "was".

1.62 1.62 2.18 2.18 2.74 2.74 3.3 5.53 6.10 6.10 6.65 SELF SELF SELF SELF SELF SELF SELF OTHER OTHER OTHER OTHER а ehm have deer oh veah how it good was

4 categories of systems, thresholded by: 1000ms, 350ms, 150ms

Example for chunk-based system:

Test of time-stamps:

all v < t	vord: stay	s with exac	time tly th	estam e sam	ps ne			
1.62 ehm	1.62 i	2.18 baye	2.18	2.74 deer	2.74	3.5	4.32 the	6.64
enn	'	nave	a	Leei	011	um	uie	a
		Г				7		
			AS	Rsys	tem			
		L		t				
								a di Manatana ang Malana
-	TW					-		

input signal with random noise (or zeros or NaNs) from t=2.8 onward

MCAS Dataset & Tools

Multichannel Audio Conversation Simulator

GOAL: Simulate the conversation scenarios

Alignments: Make speech sound naturally in terms of the phone or word at the boundary when cutting into small segments

Advantages:

- Can be used both in audio task (output clean and mixed audio) and ASR
- Leverage word alignment to make it sound more natural
- Support both on-the-fly and offline simulation

Processing 14k hours data offline takes around 4 hours (using internal Infra).

Baselines

Two baseline systems:

- 1. Starting from public pre-trained model
 - o fine-tuned on MMCSG dataset

	SELF	OTHER
Latency [s]	WER	WER
mean	[%]	[%]
0.15	17.9	24.4
0.34	15.0	21.4
0.62	14.3	20.3

2. Trained from scratch

- \circ no pre-trained models used
- $\circ~$ trained on simulated data with MCAS tool

	SELF	OTHER
Latency [s]	WER	WER
mean	[%]	[%]
0.08	29.1	37.6
0.27	24.9	33.3
0.55	23.5	31.7

Results: overall

Highlights

- importance of data (USTC-NERCSLIP, NPU-TEA, FOSAFER_RESEARCH)
- modular system following Task-2 baseline (NPU-TEA)
- exploration of multi-channel NN speech separation (SEUEE)
- exploration of IMU modality (USTC-NERCSLIP)
- no use of visual modality

Results: SELF vs OTHER

Results: speaker attribution

Winning system by category

mean latency < 150ms

The NPU-TEA System Report for the CHiME-8 MMCSG Challenge Kaixun Huang; Wei Rao; Yue Li; Hongji Wang; Yannan Wang; Shen Huang; Lei Xie

150ms < mean latency < 350ms

The NPU-TEA System Report for the CHiME-8 MMCSG Challenge Kaixun Huang; Wei Rao; Yue Li; Hongji Wang; Yannan Wang; Shen Huang; Lei Xie

350ms < mean latency < 1000ms

THE FOSAFER SYSTEM FOR THE CHIME-8 MMCSG CHALLENGE Shangkun Huang

1000ms < mean latency (non-streaming)

The USTC-NERCSLIP Systems for the CHiME-8 MMCSG Challenge Ya Jiang; Jun Du; Qing Wang; Hongbo Lan; Shutong Niu

Jury award

The SEUEE System for the CHiME-8 MMCSG Challenge

Cong Pang; Feifei Xiong; Ye Ni; Lin Zhou; Jinwei Feng

- for investigation of original speech separation method and its successful application to the egocentric data
- best speaker attribution performance
- efforts towards a fully streaming method

Conclusions

Potential future directions

- more acoustically challenging conditions (noise, distractor speech)
- better support of visual modality
- multilinguality? translation task?

Big thanks to

- all collaborators
- steering committee
- task-1/2 organizers
- participants!

