

The SEUEE System for the CHIME-8 MMCSG Challenge – **Neural Directional Speech Extraction for ASR on Smart Glasses**

Cong Pang^{1,2}, Feifei Xiong², Ye Ni¹, Lin Zhou¹, Jinwei Feng²

CHIME-8 Task 3 - MMCSG ASR for multimodal conversations in smart glasses

CHiMe CHALLENGE

¹Southeast University, Nanjing, China ²Hummingbird Audio Lab, Alibaba Group, Hangzhou, China

The CHiME-8 MMCSG challenge focuses on transcribing both sides of a conversation where one participant is wearing smart glasses equipped with a microphone array and other sensors.

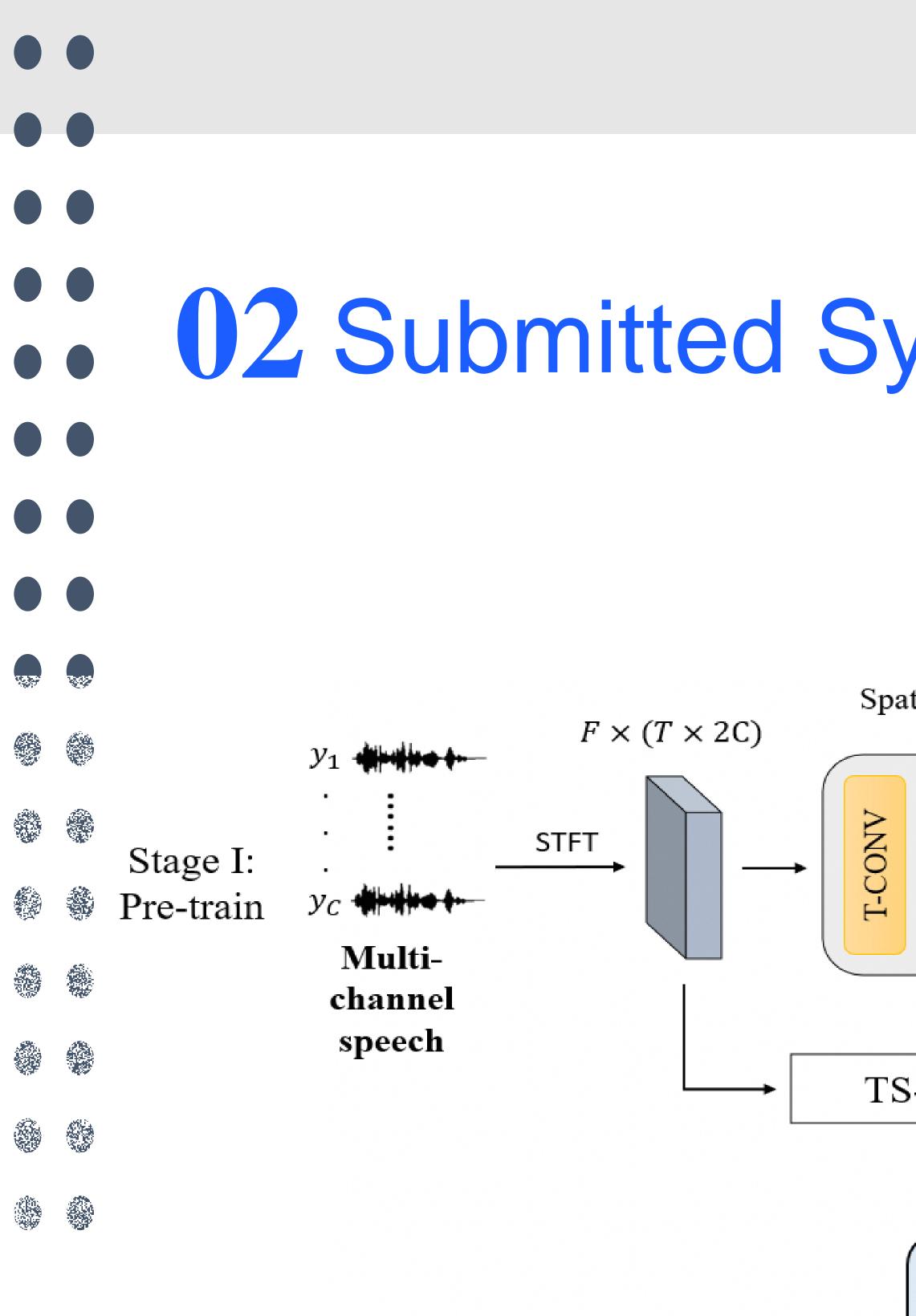
> We introduce our directional speech extraction (DSE) system for MMCSG task to extract the wearer and the partner audio

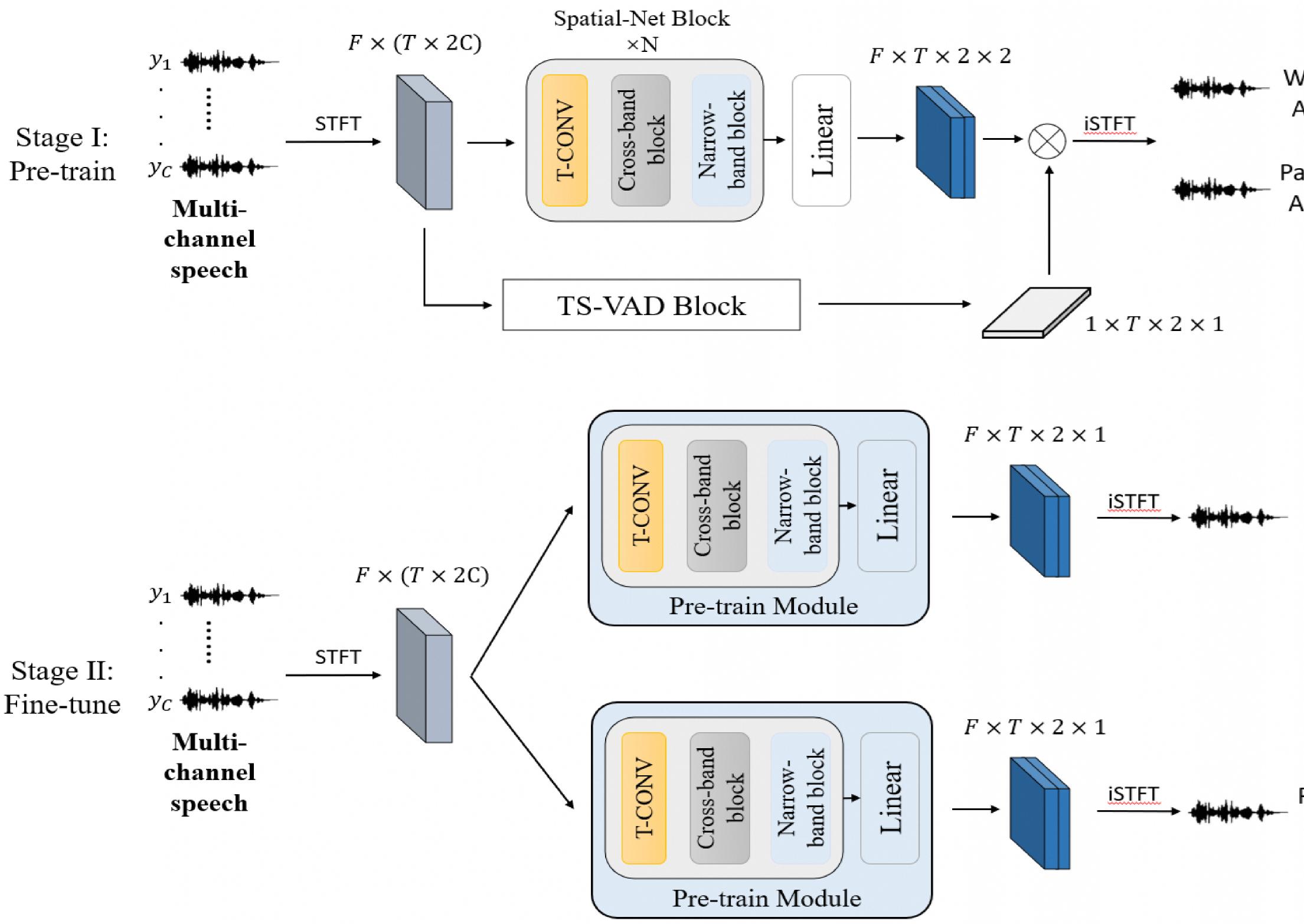
Submitted system: based on SpatialNet [1] and targetspeaker voice activity detection (TS-VAD) [2,3], we introduce a two-stage training strategy to stabilize the individual DSE models

Extension work: we introduce direction features (DFs) and ASR-inspired loss function to constrain the DSE model

Separation, Denoising and Dereverberation," in TASLP, 2024. Sequence Prediction," in ICASSP, 2023. Detection Network with Attentive Score Loss," in ICASSP, 2023.

- [1] C. Quan and X. Li, "SpatialNet: Extensively Learning Spatial Information for Multichannel Joint Speech [2] M. Cheng, W. Wang, Y. Zhang, X. Qin, and M. Li, "TargetSpeaker Voice Activity Detection via Sequence-to-
- [3] F. Liu, F. Xiong, Y. Hao, K. Zhou, C. Zhang, and J. Feng, "AS-pVAD: A Frame-Wise Personalized Voice Activity





02 Submitted System for MMCSG

¹https://ai.meta.com/datasets/mcas-dataset/ ²Librispeech: An ASR corpus based on public domain audio books ³ICASSP 2023 Deep Noise Suppression Challenge

Wearer Audio

Partner Audio

> Wearer Audio

Partner Audio

SpatialNet exploit narrow-band and cross-band spatial information.

TS-VAD is used to weight speech segments of different attributes. The entire module mainly includes multiple 2D convolutions and FT-LSTM blocks, and the module is trained jointly.

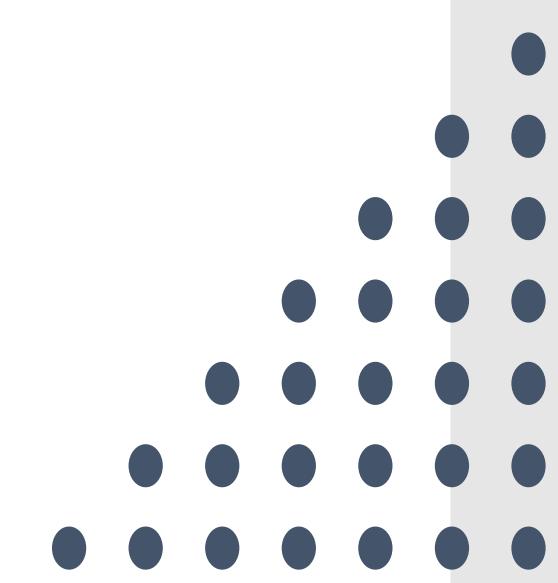
> 100h training dataset is simulated^{1,2,3}. Both

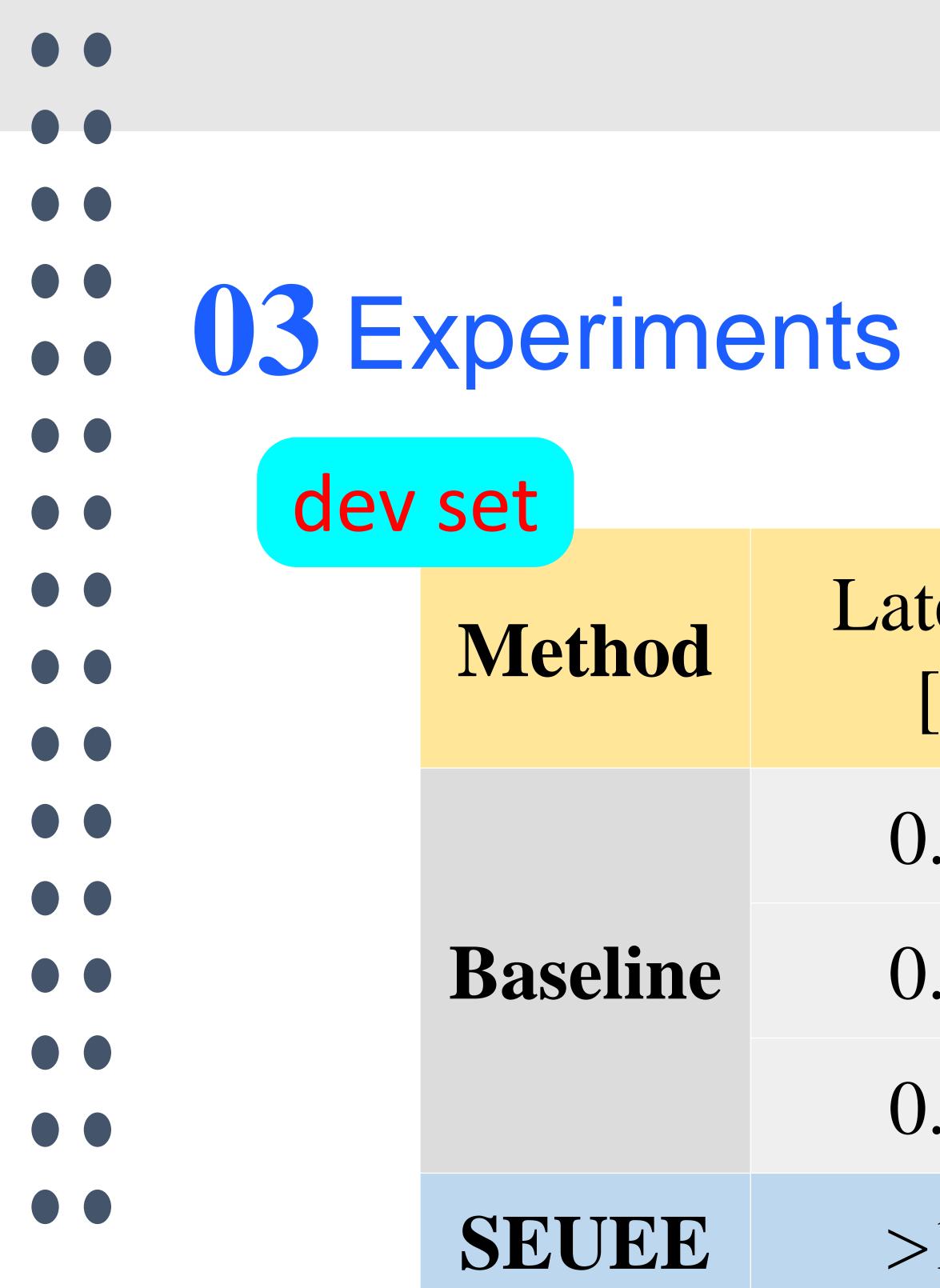
wearer and partners' labeled speech are normalized to -25dBFS (16bits).

> Two-stage training strategy is introduced to

stabilize the individual DSE models.

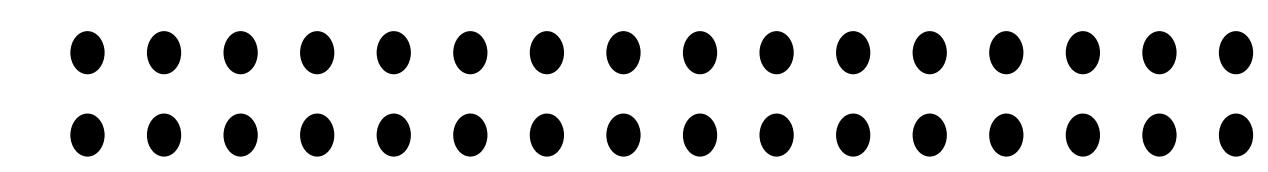
- > pre-train: obtain global spatial knowledge
- fine tune: separating the one' s speech from that of conversation others





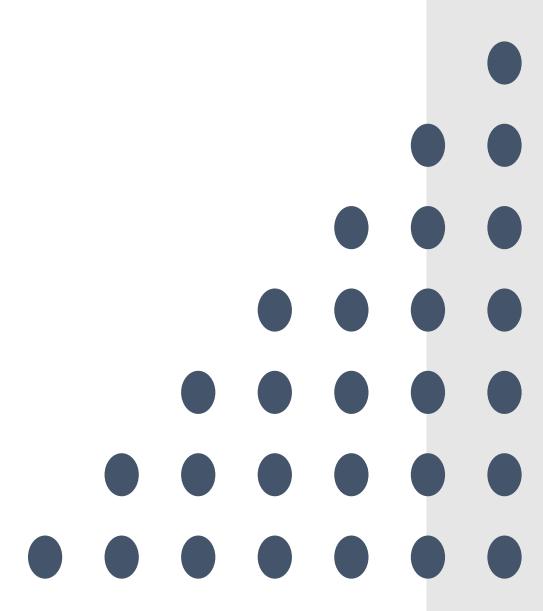
Loss function:

TS-VAD is helpful to obtain a robust pre-trained model > SEUEE achieved a relative WER improvement of 16.43% (Self) and 0.49% (Other) over the baseline on development set

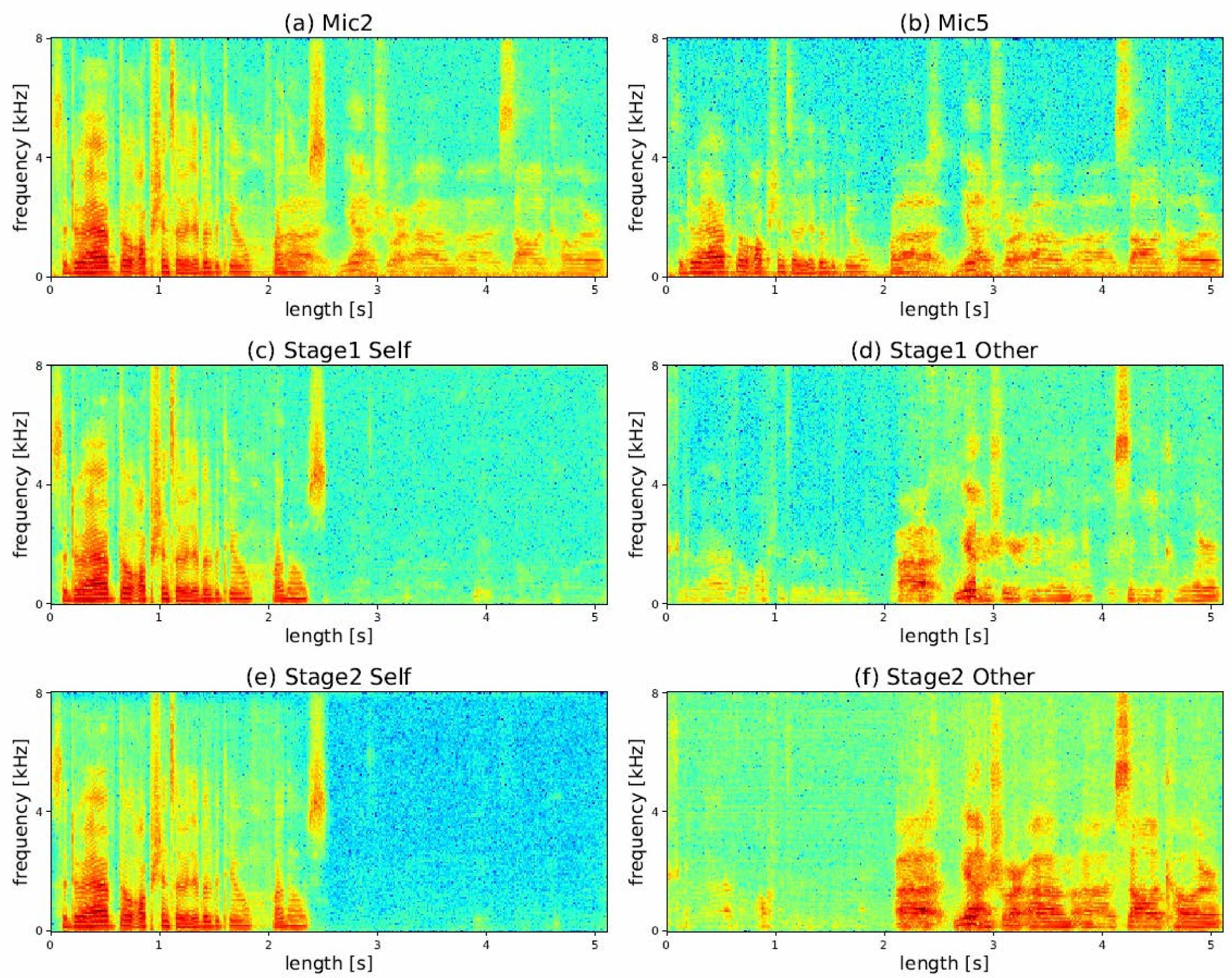


tency [s]	SELF					OTHER				
	WER	INS	DEL	SUB	ATTR	WER	INS	DEL	SUB	ATTR
).15	17.9	1.7	4.2	10.5	1.6	24.4	2.6	7.3	12.3	2.2
).34	15.0	1.4	3.9	8.4	1.4	21.4	2.2	7.2	10.1	1.8
).62	14.3	1.3	3.8	7.9	1.3	20.3	2.1	7.1	9.6	1.6
>1.0	12.0	1.4	3.9	6.3	0.4	20.2	3.0	6.5	10.2	0.5

 $\mathcal{L} = \alpha_1 \mathcal{L}_{\mathrm{SiSNR}} + \alpha_2 \mathcal{L}_{STFT}(r).$



• 03 Experiments



Spectrograms of sample audio for the MMCSG task.

(a) Signal received by microphone 2.

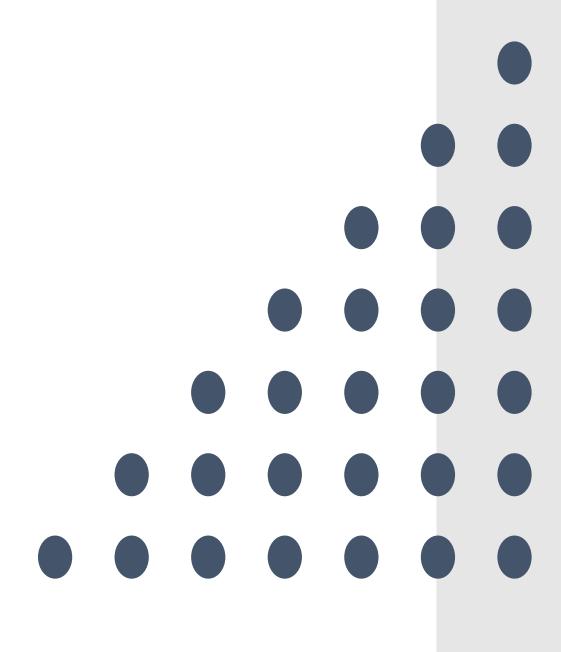
(b) Signal received by microphone 5.

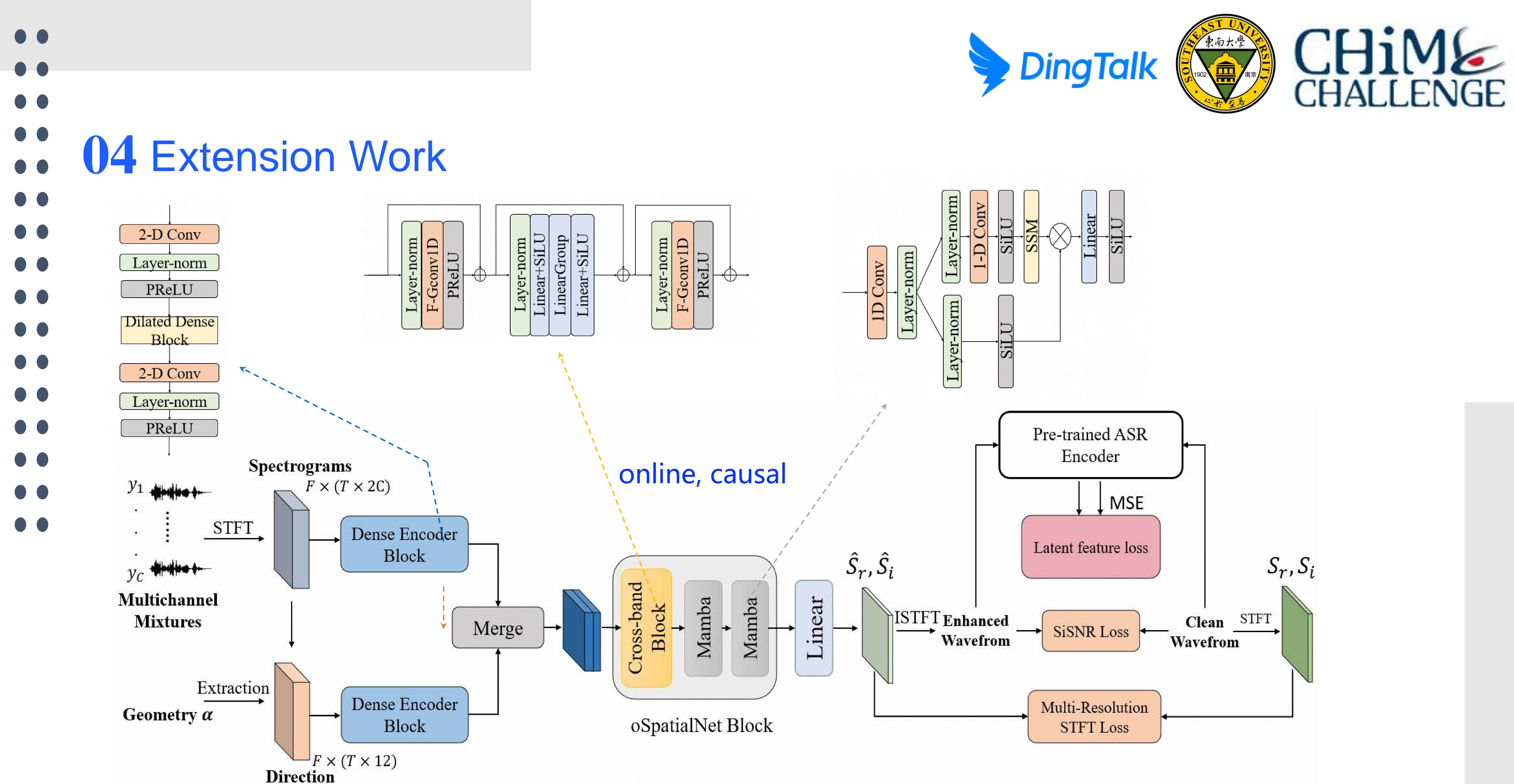
(c) The wearer's speech separated by the proposed model in stage 1.

(d) The partner's speech separated by the proposed model in stage 1.

(e) The wearer's speech separated by the proposed model in stage 2.

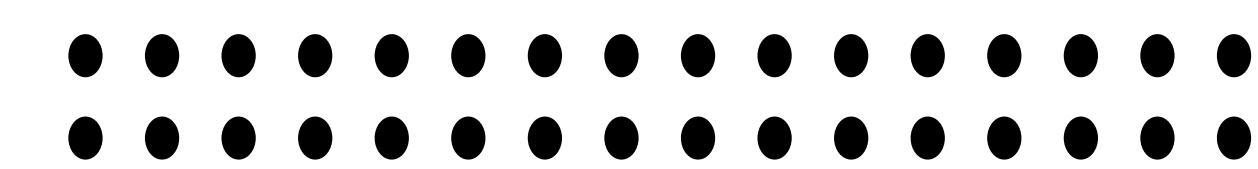
(f) The wearer's speech separated by the proposed model in stage 2.





> We introduce direction features (DFs) to enhance the spatial knowledge in feature dimension

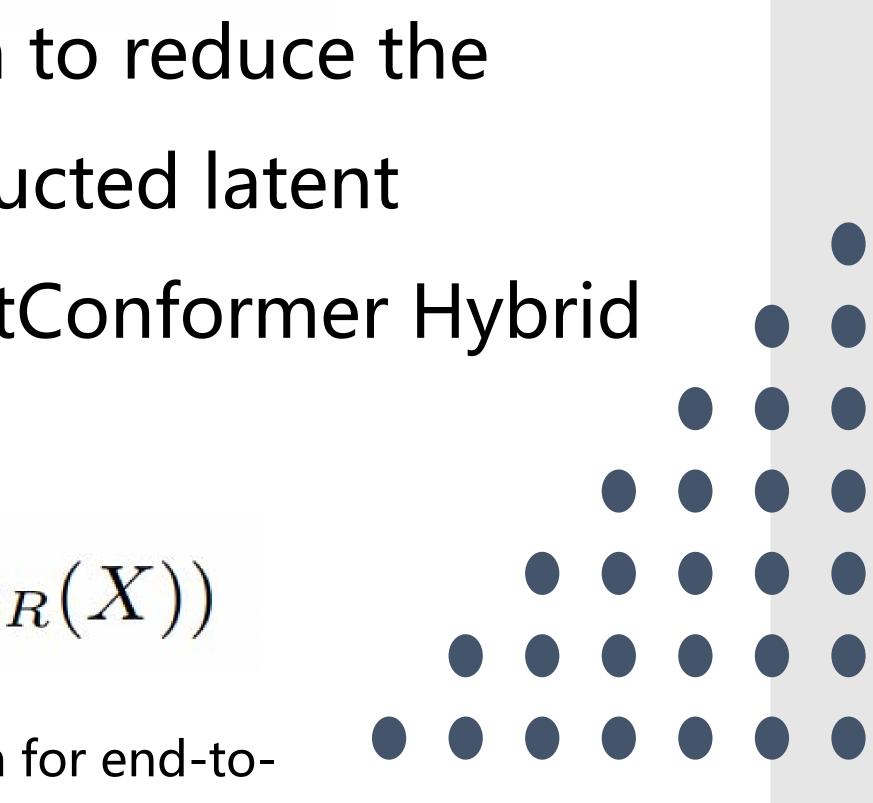
features



We introduce ASR-inspired loss function to reduce the distance between the clean and reconstructed latent representations from the pre-trained FastConformer Hybrid Transducer-CTC model [4]

[4] V. Bataev, R. Korostik, E. Shabalin, V. Lavrukhin, and B. Ginsburg, "Text-only domain adaptation for end-toendasr using integrated text-to-mel-spectrogram generator," in INTERSPEECH 2023

 $\mathcal{L}_{enc} = MSE(Enc_{ASR}(\hat{X}) - Enc_{ASR}(X))$

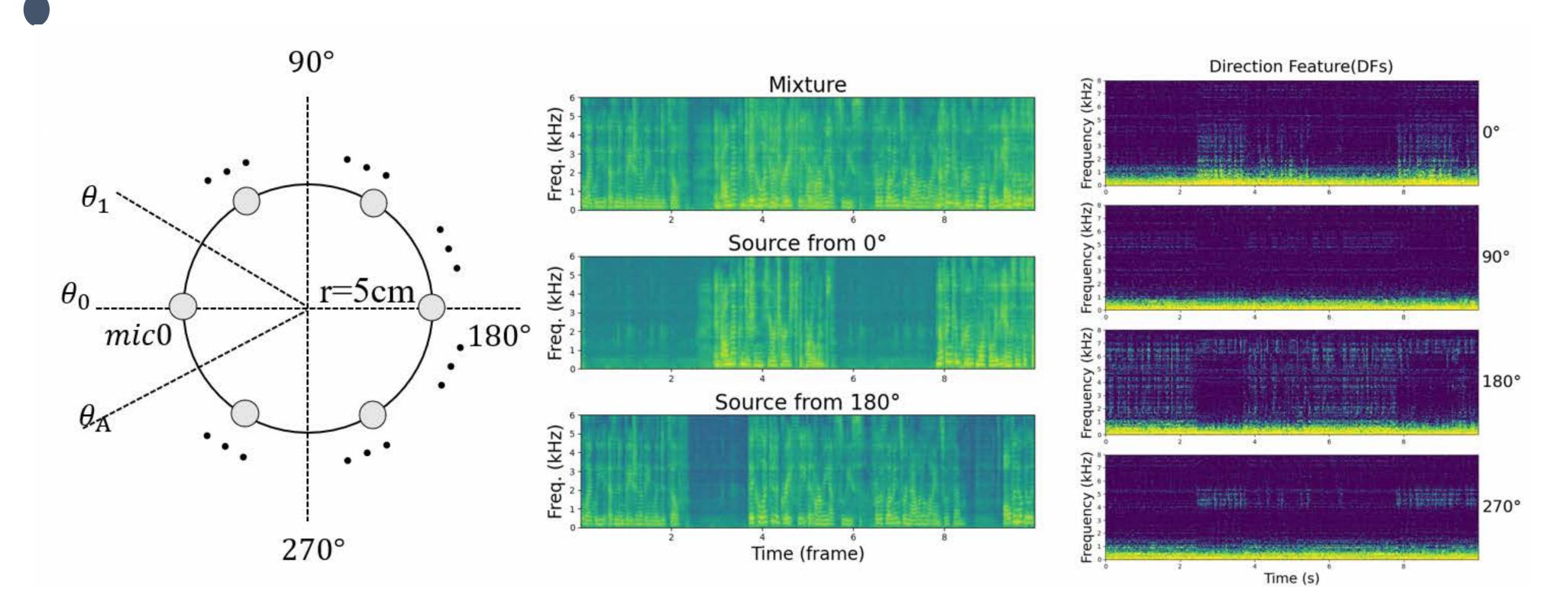


04 Extension Work

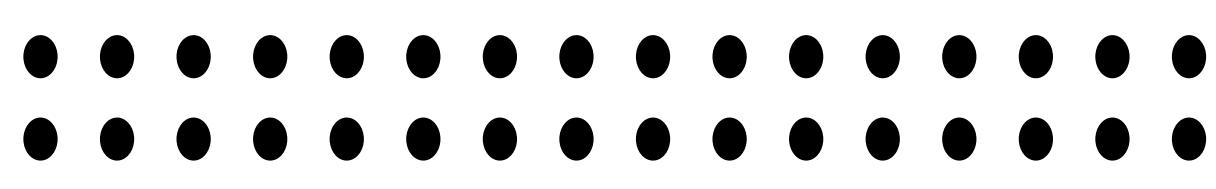
00

DFs trained to learn the directional knowledge

 $DF(\theta_{i}, t, f) = \sum \left\langle \mathbf{K}^{IPD^{(p)}(t, f)}, \mathbf{K}^{TPD^{(p)}(\theta, f)} \right\rangle, i = 1, 2, ..., M,$



Cosine similarity between ideal phase difference and target-dependent phase difference Target directions degree 0 and degree 180 more discriminative features from 1kHz – 8kHz

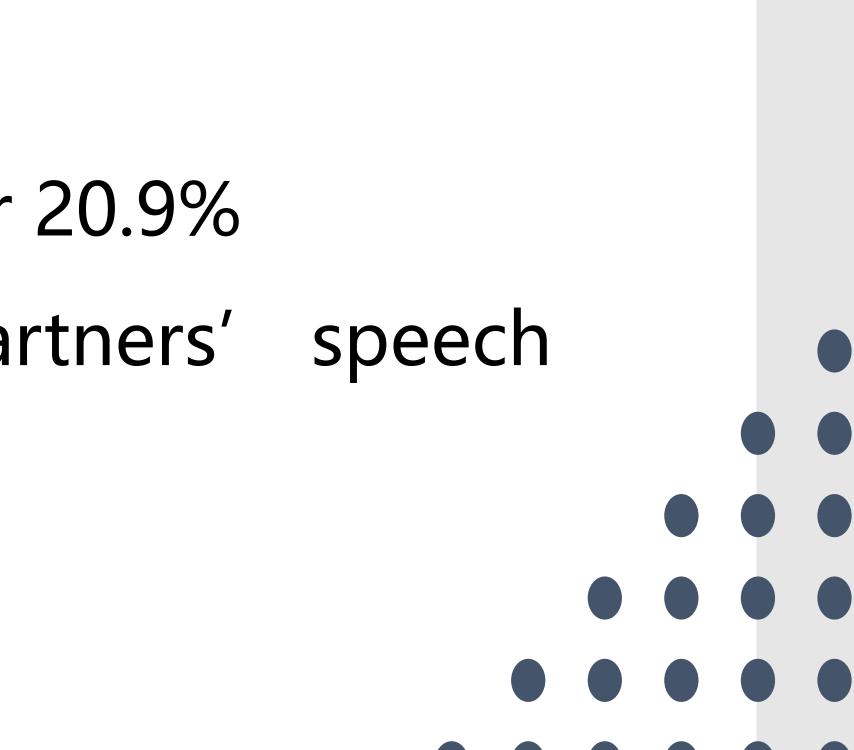


representations to further assist the spectrograms to extract the speech from a specific direction (a-prior)

eval Me Bas SE Ext

set						
ethod	latency [s]	Overall WER			OTHER WER	OTHER ATTR
	0.14	22.1	17.8	2.5	26.3	2.5
seline	0.33	18.9	15.0	2.4	22.9	2.2
	0.62	17.9	14.1	2.3	21.7	2.1
EUEE	>1.0	16.3	11.1	1.1	21.5	0.8
tended	0.34	15.8	10.7	1.0	20.9	0.9

Extended system: real-time, causal system, latency 0.34s > Compared to our previously submitted system, a relative WER improvement of 3.6% (Self) and 2.8% (Other) is achieved on evaluation test set > Overall WER: 15.8%; Self 10.7%, Other 20.9% Still very challenging for extracting partners' speech

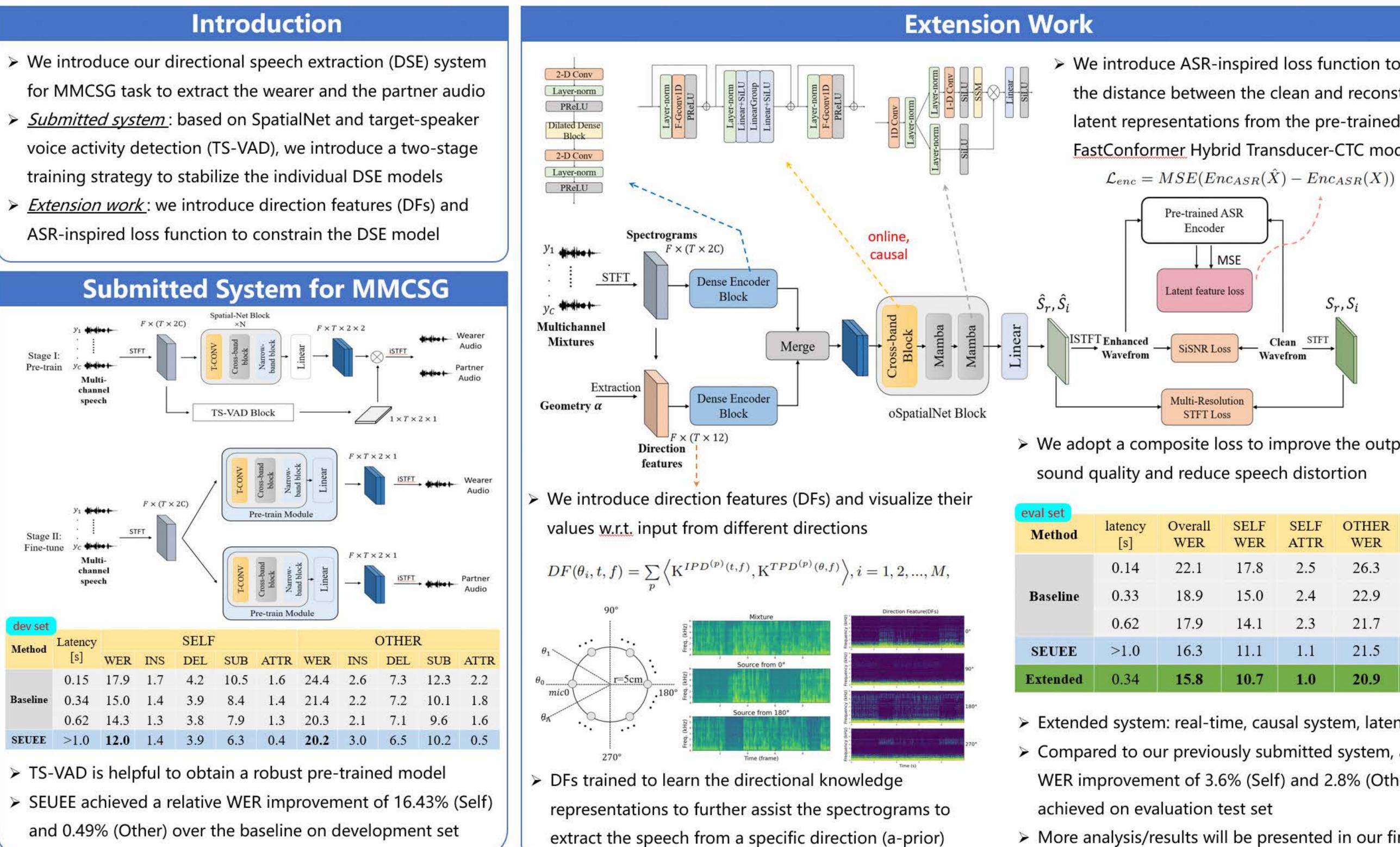


Thank you for your listening!

Any questions please contact: pangcong@seu.edu.cn

CHIME-8 Task 3 - MMCSG ASR for multimodal conversations in smart glasses

CHiMe CHALLENGE



The SEUEE System for the CHiME-8 MMCSG Challenge – DingTalk **Neural Directional Speech Extraction for ASR on Smart Glasses** Cong Pang^{1,2}, Feifei Xiong², Ye Ni¹, Lin Zhou¹, Jinwei Feng²

¹Southeast University, Nanjing, China

²Hummingbird Audio Lab, Alibaba Group, Hangzhou, China

We introduce ASR-inspired loss function to reduce the distance between the clean and reconstructed latent representations from the pre-trained FastConformer Hybrid Transducer-CTC model

We adopt a composite loss to improve the output

eval set						
Method	latency [s]	Overall WER	SELF WER	SELF ATTR	OTHER WER	OTHER ATTR
	0.14	22.1	17.8	2.5	26.3	2.5
Baseline	0.33	18.9	15.0	2.4	22.9	2.2
	0.62	17.9	14.1	2.3	21.7	2.1
SEUEE	>1.0	16.3	11.1	1.1	21.5	0.8
Extended	0.34	15.8	10.7	1.0	20.9	0.9

- Extended system: real-time, causal system, latency 0.34s
- Compared to our previously submitted system, a relative WER improvement of 3.6% (Self) and 2.8% (Other) is
- > More analysis/results will be presented in our final paper