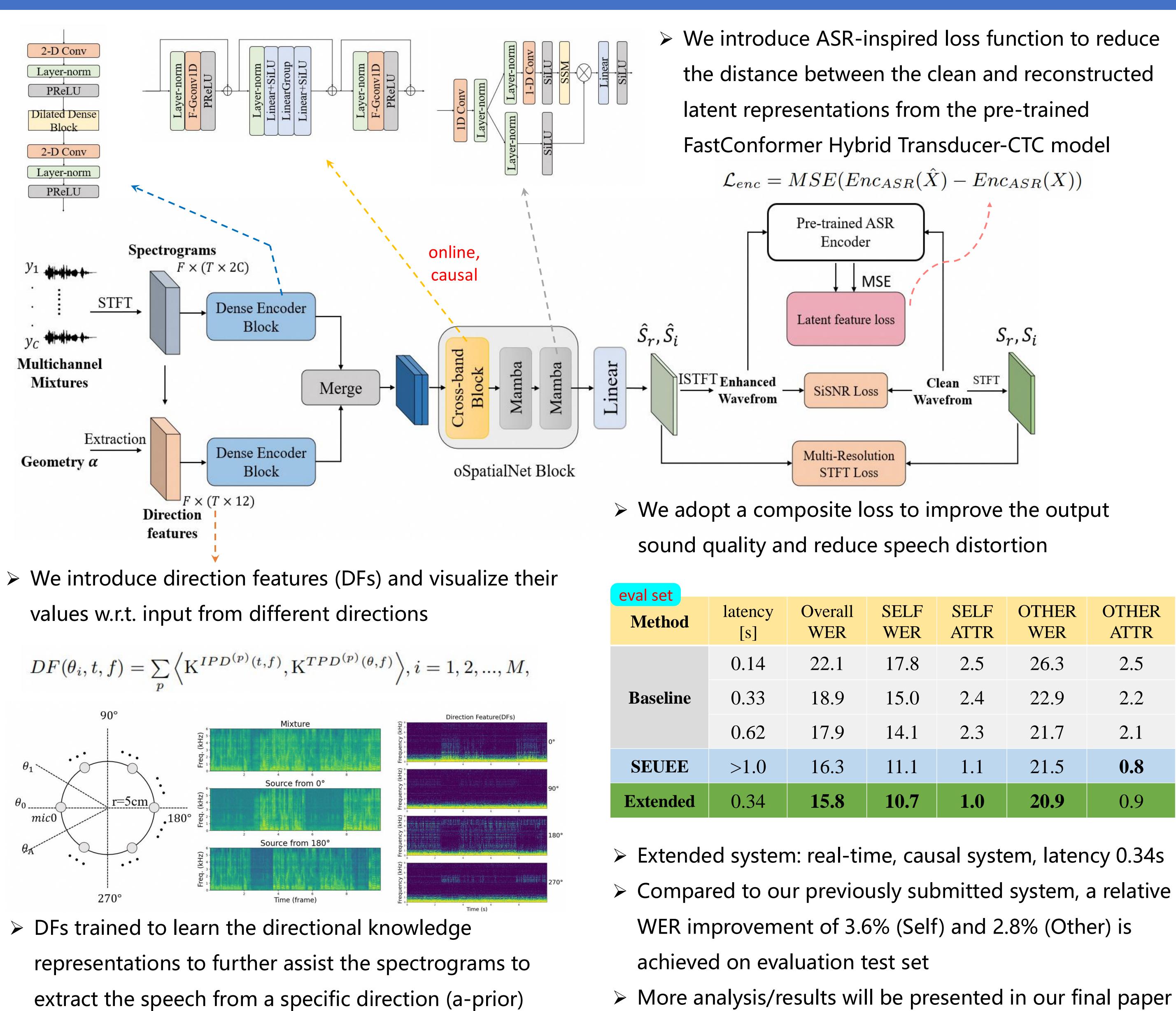


The SEUEE System for the CHiME-8 MMCSG Challenge – **Neural Directional Speech Extraction for ASR on Smart Glasses**

Introduction


- > We introduce our directional speech extraction (DSE) system for MMCSG task to extract the wearer and the partner audio Submitted system: based on SpatialNet and target-speaker voice activity detection (TS-VAD), we introduce a two-stage training strategy to stabilize the individual DSE models > *Extension work*: we introduce direction features (DFs) and ASR-inspired loss function to constrain the DSE model

	S	ubr	nitt	ted	Sys	tem	fo	r M	MC	SG	
Stage I: Pre-train Stage A Stage I: Pre-train Stage I: STFT Multi- channel speech STFT Stage I: STFT Multi- Channel Stage I: STFT Multi- Channel Stage I: STFT Multi- Channel Stage I: STFT Multi- Channel Stage I: STFT Multi- Channel Stage I: STFT Multi- Channel Stage I: STFT Multi- Channel Stage I: STFT Multi- Channel Stage I: STFT Multi- Channel Stage I: Stage I:											
Stage II: Fine-tune Stage A Stage II: Step ch Stage II: Step ch Stage II: Step ch Step ch S											
dev set						re-train Mo					
Method	Latency [s]	WED	INTO	SELF					OTHER		
	0.15	WER 17.9	1NS 1.7	DEL 4.2	SUB 10.5	ATTR 1.6	24.4	INS 2.6	DEL 7.3	SUB 12.3	ATTR 2.2
Baseline	0.15	17.9	1.7	4. <i>2</i> 3.9	8.4	1.0	24.4	2.0	7.3	12.5	1.8
	0.62	13.0	1.4	3.8	7.9	1.4	20.3	2.2	7.1	9.6	1.6
SEUEE	>1.0	12.0	1.4	3.9	6.3	0.4	20.2	3.0	6.5	10.2	0.5
 TS-VAD is helpful to obtain a robust pre-trained model SEUEE achieved a relative WER improvement of 16.43% (Self) 											

and 0.49% (Other) over the baseline on development set

Cong Pang^{1,2}, Feifei Xiong², Ye Ni¹, Lin Zhou¹, Jinwei Feng²

¹Southeast University, Nanjing, China ²Hummingbird Audio Lab, Alibaba Group, Hangzhou, China

Extension Work

> We adopt a composite loss to improve the output sound quality and reduce speech distortion

eval set Method	latency [s]	Overall WER	SELF WER	SELF ATTR	OTHER WER	OTHER ATTR
	0.14	22.1	17.8	2.5	26.3	2.5
Baseline	0.33	18.9	15.0	2.4	22.9	2.2
	0.62	17.9	14.1	2.3	21.7	2.1
SEUEE	>1.0	16.3	11.1	1.1	21.5	0.8
Extended	0.34	15.8	10.7	1.0	20.9	0.9

