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Introduction Table 1. Clustering-based diarization results on devsets. Table 3. Dev/eval tcpWER comparison of GSS and G-TSE results.
System max_spk DER / speaker count accuracy system chime dipco mixer6 | notsofarl

= Goal: to build accurate diarization and ASR system for multichannel conversations B chime6 | dipco | mixer6 | notsofarl| — Avg 2-pass GSS|25.9/37.1/32.0/22.6111.8/13.8| 21.4/-
= Data: haceline 2 26.8 2478 | 16.53 - - G-TSE 25.5/36.7132.1/22.7111.6/13.5 21.2/-

= Four datasets: CHIME-6, DiPCo, Mixer 6 Speech, NOTSOFAR1 3 36 26 24 - :

= Different settings: dinner party, interview, office meeting single_orig” 8 25.3/0.87123.7/116.3/0.9120.0/0.86 20.6/0.88

= Different number of speakers (2-8) and microphones (7-35) single wpe* 8 241/1 22.4/112.8/0.97 20.8/0.85 19.4/0.87 ASR

" very different session durafion {from & min to over 2 hours o fusion 8 | 235/1 21.4/1 13.0/0.98 13.0/0.89 17.9/0.90
= Main focus: generalization of a solution to all above factors of variability “The best of & systems with different parameters thr and VAD segments. * The set of ASR models is mainly the same as in CHIME-7

= Metrics: time-constrained minimum-permutation WER (tcpWER, main), DER
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- Results of source separation are fed into multiple ASR L FT then across channels = Data for finetuning: texts from CHIME-8 training data and Librispeech
models. ASR results can be used to update masks for Clustering based diarizaton | - Qes;ored/original N-best lists were converted to the lattices and lattice fusion was
source separation Pre_priessmg ‘ e Newral it et applied to the set of results selected based on average tcpWER over devsets
= ASR results are optionally re-scored with Large LM and | 1 | ' DER
. — Multi-channel input — -
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Clustering-based diarization (CBD) dev |eval | dev | eval | dev jeval] dev ME- ' .
9 CBD fusion origSwpe 23.5 29.6 21.4 17.3 130 75 130 1170 The results of our system on CHIME-8 DASR Task are presented in the table:
erstenesdls freach hame Best single ND finetune|  wpe [11.7 15.2/13.3/10.2 7.4 4.4 8.1 10.0 dev tcpWER,% eval tcpWER,%
= Goals: | scm] | ND fusion orig&wpe | 10.8114.8/13.8/10.0| 7.1 | 4.3 /.9 9.8 chimeé | dipco | mixer6 notsofarl| Avg chimeé dipco mixer6é notsofarl| Avg
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= to prepare initial segmentation for Neural L GMM"';“”"Q J Source Separation Unconstrained LM track
Diarization [ Fer uter ing 0550AN _ 225 [284] 9.8 | 187 [19.9] 331 [19.9] 109 | 146 [19.6
= Mixed speech detector: AED-model f A | = Basic approach: Guided Source Separation (GSS) with GPU acceleration [3]
based on Wav2Vec2.0 XLS-R53 B e ) = Using soft weights from ND improves ASR accuracy and reduces the number of GSS EM-iterations
= returns multiple speaker embeddings per S — = The second pass of the GSS uses the same soft weights, but multiplies them by hard VAD masks References
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= #speakers in session is determined by majority voting across session’s channels
= diarization results from 12 different settings are DOVERLap-ed for each channel
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https://github.com/liyunlongaaa/NSD-MS2S

