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Abstract

We fine-tuned Whisper to condition on oracle and hypothesis diarization outputs for the NOTSOFAR task.
o Two diarization-aware approaches to automatic speech recognition (ASR) that repurpose Whisper to perform target speaker ASR
1. Query-Key Biasing 2. Segmental State Projections

Query-Key Biasing (QK)

Segmental State Projections (SSP)

o Speaker attention mask with modified positional =~ © Conditions on the entirety of the diarization output
embeddings using frame-level speaker labels
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o Weights and keys are modified as
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o For target speakers the weights are unchanged.

o For non-target speakers the weight is controlled

by bias parameter c (seen below)
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o For non-target speaker frames the preceding
positional encoding is repeated.

o For target-speaker frames positional encodings
are correspondingly shifted

Diarization
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o Multi-channel processing (MC)
o Run 1 WavlLM model per channel in parallel
o Model inter-channel dependencies
o Let H' be WavLM activations at layer ¢ and

Affine Layers
channel [, LN be layer norm and | | concatenation

o Next layer inputs are determined b
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o Optionally followed by GSS

Model tcpWER [%] | DER [%]
Baseline SC 45.8 -
Baseline MC 31.6 . .
QK-Bias Med 51.3 10.9

QK-Bias Large 48.7 10.9

SSP Large - sc 36.5 10.9 ’
SSP Large+FT - sc 35.9 10.9

SSP Small - mc 36.9 10.4

SSP Large - mc 2 5 ) 10.4 )

GSS Med - mc 29.6 10.4

o Encode:
o Silence (S), Target Speech (T) Non-target Speech (N) Overlapped speech (O)
o Each STNO class is encoded via a frame-level affine transformation at the input
of transformer blocks
o Additionally fine-tune with CTC to mitigate hallucinations
o Down-sampled outputs for CTC
o Multi-channel decoding by running single-channel model in parallel
o Average 8th-layer outputs

Diarization Hey! How are you? <‘ Decode 1
speaker at a

o Train on hard labels T
o Decode with soft-labels
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Conclusion / Future Work

QK-Biasing works slightly worse e Whisper can be turned into a target speaker
than the NOTSOFR baseline ASR system

Segmental state projection Future Work:

outperforms the baseline e Upcoming ICASSP Submission

Multi-channel processing improves  Model and data scaling

performance slightly

* Analysis of importance of STNO
Additional GSS greatly improves transformations

performance



