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EEND-VC segmentation
- Perform EEND-VC to obtain chunk-

level segmentation with speaker 
activity, setting a maximum of 4 
speakers per chunk

- Extract speaker embeddings on 
each chunk with ECAPA-TDNN

- Three modifications from our EEND-
VC system for CHiME7:
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• Apply GSS before embedding extraction to enhance speaker characteristic in embeddings
• Employ constrained spectral clustering instead of constraint AHC
• Reduce Chunk size from 80 to 30 sec to handle recordings with more than 4 speakers and 

high overlap.
Multi-microphone speaker counting
- Employ Normalized maximum eigengap spectral clustering (NMESC) for speaker counting
- Apply following multi-channel speaker counting to perform NMESC using more embeddings 

1. Find channel groups using AHC based on inter-channel correlations
2. Extract ECAPA-TDNN-based speaker embeddings from GSS outputs in each channel 

group
3. Perform NMESC-based speaker counting on each channel group
4. Integrate the group-wise speaker counting results by averaging them

Detailed speaker counting setting:
• GSS is calculated over 30-sec segments using time-stamp obtained by EEND
• Speaker embeddings are extracted from 15-sec segments of GSS output
• Channel clustering is performed on a 0.3 correlation threshold over the first 120 sec signal.
 Speaker embeddings are computed using the ECAPA-TDNN model on GSSSpeaker 
embeddings are computed using the ECAPA-TDNN model on GSS

*Equal contribution

ASR

Diarization pipeline

Overall pipeline: 
Propose a multi-channel multi-speaker DASR system extending NTT 
CHiME-7 task1 system
Following a pipeline similar to the CHiME-8 task1 baseline: 
1) Diarization
2) Speech enhancement (SE) with guided source separation (GSS)
3) ASR

Main contributions:
- Diarization: 
     1. E2E neural diarization with vector clustering (EEND-VC)-based diarization and target-speaker voice activity detection (TS-VAD)-based refinement
     2. Novel multi-channel speaker counting approach
- SE:  Modification on GSS: New rule for microphone subset selection and  spatial-prediction multichannel Wiener filter (SP-MWF) 
- ASR:  Four strong ASR models and a Language Model (LM) for rescoring and system combination by ROVER 
- Overall: Our system achieved 21.3% tcpWER on dev set and 57% relative reduction over the baseline system

Training data
70 hours of CHiME-8 training data processed with GSS for the Oracle segmentation

tcpWER [%] (↓) on the dev set with oracle diarization and SE front-end.
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Abstract
We present a distant automatic speech recognition (DASR) sys-
tem developed for the CHiME-8 DASR track. It consists of a
diarization first pipeline. For diarization, we use end-to-end di-
arization with vector clustering (EEND-VC) followed by target
speaker voice activity detection (TS-VAD) refinement. To deal
with various numbers of speakers, we developed a new multi-
channel speaker counting approach. We then apply guided
source separation (GSS) with several improvements to the base-
line system. Finally, we perform ASR using a combination of
systems built from strong pre-trained models. Our proposed
system achieves a macro tcpWER of 21.3 % on the dev set,
which is a 57 % relative improvement over the baseline.
Index Terms: Robust ASR, multi-talker ASR, speaker diariza-
tion, CHiME-8 DASR

1. Introduction
The distant automatic speech recognition (DASR) problem con-
sists of identifying when each speaker speaks (diarization)
and transcribing their speech (ASR) in conversations captured
by distant microphones. The CHiME challenge series has
proposed tasks with increased levels of difficulty to measure
progress in DASR, such as recordings of up to four speakers in
home environments. The CHiME-8 DASR [1] track extends the
difficulties of the previous editions by expanding the variety in
the number of speakers per recording (up to eight), microphone
array configurations, recording conditions, and speaking styles.
Concretely, this is realized by requiring building a single DASR
system, which can operate on four datasets, including dinner
party recordings with four participants (CHiME 6 (CH6) [2] and
DiPCO (DiP) [3]), two-speaker interviews (Mixer 6 (MX6) [4])
and a new corpus of business-like meetings called NOTSOFAR
(NSF) [5].

Our contribution to the CHiME-8 DASR track consists of
a diarization first pipeline [6], which combines speaker diariza-
tion, speech enhancement (SE), and ASR as shown in Fig. 1.
For the diarization, we extended our previously proposed end-
to-end diarization with vector clustering (EEND-VC)-based di-
arization to include target-speaker voice activity detection (TS-
VAD)-based refinement [7, 8]. Besides, we developed a novel
multi-microphone speaker counting approach, which estimates
the number of speakers via speaker embedding clustering per
microphone and combines the result across all microphones.
The speaker counting is crucial for CHiME-8 DASR task as
there is great variety in the number of speakers per recording,
and wrongly estimating the number of speakers greatly impacts
diarization and ASR performance.
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Figure 1: Proposed recognition system for DASR track.

For SE, we made several key modifications to the baseline
guided source separation (GSS). First, we propose a new rule
for microphone subset selection, which is based on the envelope
variance [9] and the speech clarity index C50 [10]. Besides,
we refined the SE frontend by replacing the MVDR beam-
former with the spatial-prediction multichannel Wiener filter
(SP-MWF) [11, 12]. By doing so, we mainly aim to select a
more effective reference microphone for beamforming, which
is essential when dealing with distributed microphone arrays.

For ASR, we exploit the availability of strong pre-trained
models, including Whisper, NeMo, and WavLM. First, we
investigated fine-tuning Whisper and NeMo models on the
CHiME-8 training data. We introduce a curriculum learn-
ing scheme to efficiently fine-tune Whisper on the very noisy
CHiME-8 training data. In addition to the above models, we
also developed a transducer-based ASR system, which uses
WavLM as the front-end. This last model, although being
much more computationally efficient, achieves comparable per-
formance to the Whisper- and NeMo-based models. Finally, we
perform N-best rescoring and system combination.

In the remainder, we describe the different parts of our sys-
tem, i.e., diarization and speaker counting in Section 2, SE in
Section 3 and ASR in Section 4. We then present overall results
and analysis in Section 6.

2. Diarization and speaker counting
Figure 2 shows our proposed diarization system, which consists
of EEND-VC [13] that relies on multi-channel speaker count-
ing, followed with TS-VAD-based refinement [8].

2.1. EEND-VC segmentation (DIA1)

The EEND-VC module is based on our CHiME-7 submission
[14, 15], with some essential modifications. EEND-VC per-
forms chunk-level segmentation to estimate the activity of each
speaker in each chunk with EEND, where the maximum num-
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ID Model CH6 DiP MX6 NSF Macro
ASR0 NeMo Trans. (Baseline) 19.78 31.01 10.61 17.95 19.84
ASR1 Whisper-L AED 17.80 26.29 10.43 13.05 16.89
ASR2 Whisper-M AED 19.81 27.15 11.16 13.57 17.92
ASR3 NeMo Trans. 20.30 28.33 11.25 14.33 18.55
ASR4 WavLM Trans. 19.76 27.52 10.79 13.23 17.82
ASR5 ROVER (ASR × 6 +LM resc.) 16.42 23.71 9.42 11.44 15.25

CH6 DiP MX6 NSF Macro
Baseline (NeMo) 50.0 0.0 100.0 13.8 41.0
Channel-wise counting 95.5 84.3 99.7 48.5 82.0

Microphone group-wise counting 100.0 90.0 100.0 57.5 86.9

+ Group averaging 100.0 100.0 100.0 58.2 89.6

ID Model CH6 DiP MX6 NSF Macro
DIA0 Baseline (NeMo) 45.65 45.92 25.16 38.05 38.70
DIA1 EEND-VC w/ ECAPA 28.52 24.38 9.69 10.67 18.32
DIA2 + TS-VAD 23.97 21.01 6.11 9.72 15.20

Speaker counting accuracy [%] (↑) on the dev set.

DER [%] (↓) on dev set computed with md-eval with a collar of 0.25 sec.
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tcpWER [%] (↓) on the dev and eval sets. The real-time factor(RTF) is computed on the NOTSOFAR dev set.

ASR pipeline
1. Generate hypotheses from four 

end-to-end ASR models
2. Perform LM rescoring
3. System combination by ROVER
ASR models and LM

• ASR1: Whisper Large v3
• 32-layer Transformer encoder and decoder, 1.54B parameters
• When the decoded sample CER over 30%, we skip update parameters.

•ASR2: Whisper medium.en
•24-layer Transformer encoder and decoder, 770M parameters

•ASR3: NeMo Transducer
•Encoder: 2-layer 2D CNN + 24 FastConformer blocks
•Decoder: 1-layer LSTM with 640 cells + 640-dim. Joiner, 1024 BPE tokens, 644M params

•ASR4: WavLM Transducer
•Encoder: WavLM preencoder + 2-layer 2D CNN + 18 Branchformer blocks
•Decoder: 2-layer LSTM with 640 cells + 512-dim. Joiner, 500 BPE tokens, 422M params

-Rescoring: Transformer LM
•512-att-dims, 2048-MLP-dims, 16-layers, 1000-BPE-tokens, 68M parameters
•Using 256 past rescored (re-ranked) 1-best tokens as the context in N-best rescoring

SE pipeline
Based on the official GSS in CHiME-8 NeMo baseline with modification:
- Microphone subset selection based on EV and C50 

- Using SP-MWF beamformer instead of MVDR beamformer
- Not applying blind analytic normalization (BAN) filter
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Figure 4: Proposed ASR backend.

where K = 65 [%] in our setup. Let also I = IEV \ IC50 be
the intersection of the two subsets. We selected the subset of
microphones to pass to the subsequent SE frontend as follows:

• If |I| � 15, then we select I .
• If |I| < 15 and IEV � 15, then we select IEV.
• If |I| < 15 and IEV < 15, then we select the set of the

top 15 microphones ranked by EV.
• We use all microphones when there are fewer than 15.

In the aforementioned rule, we assumed that using at least 15
microphones helps improve SE performance.

3.2. Mask-based MIMO source separation filter

As a source separation filter, the official SE frontend uses the
mask-based MIMO MVDR beamformer with maximum SNR
(MaxSNR)-based reference channel selection. We replaced this
beamformer part with the so-called spatial-prediction multi-
channel Wiener filter (SP-MWF) [11, 12] given by

wf (r) =
(e>

r Rx,fer)R
�1
n,fRx,fer

µe>
r Rx,fer +Tr(R�1

n,fRx,fere>
r Rx,f )

2 CM ,

where r 2 {1, . . . ,M} denotes the reference channel, er 2
CM is the unit vector that selects the r-th microphone, µ 2 R�0

is a hypterparameter (we set it to µ = 0), and Rx,f and Rn,f

are the target-source and noise covariance matrices at frequency
bin f . The covariance matrices are estimated using the TF mask
in the same way as in the baseline. Finally, unlike the baseline,
we do not apply blind analytic normalization (BAN) postfilter.

4. ASR
4.1. ASR models

Figure 4 shows the schematic diagram of our ASR backend. We
employed four ASR models: two attentional encoder-decoder
(AED) models and two transducer models [27]. Each ASR
model generated N-best hypotheses, which were accumulated
and rescored by language models. Both the beam size and N-
best size were set to 4. Then, the best hypothesis was deter-
mined among the original and rescored N-best hypotheses using
recognizer output voting error reduction (ROVER) [28]. The ar-
chitecture of our ASR models is described below.
Whisper Large v3 (ASR1): We fine-tuned the Whisper Large
V3 model [29] for the CHiME-8 task. The model has 1540M
parameters, i.e., 32 Transformer encoder-decoder layers with
8 attention heads and a hidden dimension of 1280. The vo-
cabulary size was 51,864 with the GPT-2 [30] byte-level BPE
tokenizer. The CHiME-8 training data is very noisy and thus
unreliable for fine-tuning. To mitigate this issue, we proposed a
curriculum learning scheme, which filters out utterances with a

high character error rate (CER). Practically, during fine-tuning,
we changed the target transcription of the cross-entropy loss to
the self-generated decoding result when the CER exceeds 30 %.
In that case, we multiplied the loss by 1/1000th to reduce its
impact. Otherwise, we used the ground-truth transcription as a
reference. By computing the CER on the fly, we can adapt the
number of training data as fine-tuning progresses, i.e., as the
model becomes stronger, the CER decreases, and more difficult
data can be reliably used.
Whisper Medium (ASR2): We also utilized Whisper Medium
English model [29] to initialize a Transformer-based encoder-
decoder model. This model had approximately 770M param-
eters and consisted of a 24-layer Transformer encoder and de-
coder, each with 8 attention heads and a model width of 1024.
The vocabulary size was 51,864 with the GPT-2 [30] byte-level
BPE tokenizer. Despite having significantly fewer parameters
than Whisper Large V3, it is pre-trained solely on English data,
making it potentially more suitable for the CHiME-8 tasks.
NeMo Transducer (ASR3): We adopted an official pre-trained
NeMo transducer model, which had 644M parameters, and fine-
tuned it using the CHiME-8 dataset. The NeMo transducer
model consists of two-layer 2D convolutional neural networks
(CNNs) followed by 24 fast conformer blocks [31, 32]. The
prediction and joint networks had a 640-dimensional long short-
term memory (LSTM) and a 640-dimensional feed-forward net-
work. The number of output units was 1025 byte pair encoding
(BPE) tokens.
WavLM Transducer (ASR4): We built another transducer-
based ASR system that uses the weighted sum of WavLM
[18] Transformer layers as input features. The ASR encoder
has two-layer 2D-CNNs followed by 18 branchformer blocks
[33]. The prediction and joint networks had two-layer 640-
dimensional LSTMs and a 512-dimensional feed-forward net-
work, respectively. We adopted 500 BPE tokens as output
units. The total number of parameters was approximately
422M. We conducted three-step training to build the ASR4
system sequentially: 1) partial parameters were trained us-
ing the CHiME&LibriSpeech&VoxCeleb datasets while freez-
ing WavLM front-end, 2) all network parameters (including
WavLM) were fine-tuned using the same data from the first step,
and 3) we fine-tuned it using only the CHiME-8 data.
LM: We built a 35M parameters of Transformer-LM for LM
rescoring. The LM has the vocabulary of 1000 BPE tokens. We
pre-trained the LM using 1/10 of the LibriSpeech text dataset
and then fine-tuned using the CHiME-8 train text dataset. At
the inference, the LM uses 256 past rescored (re-ranked) 1-best
tokens as the context (i.e., context carry-over) [34].

5. Training data
Diarization: Each diarization model (EEND-VC and TS-VAD)
was initially trained using simulated mixtures and then fine-
tuned using the CHiME-8 training set. The protocol for sim-
ulating mixtures basically followed the method that attempts
to make utterance transitions natural [35], but the following
modifications were made to have more similar statistics to the
real data: i) we first considered turn-hold, turn-switch, and
interruption to generate long-form audio, and then inserted
backchannels afterward, ii) we directly sampled durations of
silence/overlap between utterance from the real data instead of
sampling from any fitted distribution, and iii) overlap durations
in interruptions/backchannels were determined from absolute
durations extracted from the real data (instead of relative ratios).
We generated 1M and 91k 50-second mixtures of four speakers

Microphone subset selection
Using two features: the envelop variance (EV) and C50 (energy ratio of the early 
phase to the late phase of the room impulse response) estimated by Brouhaha 
toolkit. 
Our selection rule:
- If the intersection of the top K microphones ranked by EV and C50 (K = 65%) 

contains at least 15 microphones, select them
- If fewer than 15 microphones intersect, but EV ranking has at least 15, select 

those
- If neither condition is met, select the top 15 microphones by EV
- Use all microphones if fewer than 15 are available

Spatial-prediction multichannel Wiener filter (SP-MWF) 

TS-VAD refinement
- NSD-MS2S is applied to refine diarization results from EEND-VC.
- Same model configuration as CHiME-7 winner, but with stronger initial diarization by EEND-VC

DIA1︓EEND-VC + Multichannel Speaker Counting
DIA2 : DIA1 + TS-VAD

dev eval
ID Diar SE ASR CH6 DiP MX6 NSF Macro CH6 DiP MX6 NSF Macro RTF
Baseline NeMo - - 49.3 78.9 15.8 56.2 50.0 56.5 75.8 19.4 61.0 53.2 -
NTT-1 DIA1 SE ASR4 30.1 35.9 10.9 23.9 25.2 44.8 26.2 15.6 22.1 27.2 2.46
NTT-2 DIA2 SE ASR1 28.2 35.3 10.7 20.4 23.7 38.7 25.0 14.9 18.3 24.3 3.14
NTT-3 DIA2 SE ASR5 (ROVER) 25.5 31.3 9.6 18.8 21.3 35.3 22.4 13.5 16.8 22.0 4.03
We proposed three versions of our DASR system, each with a different computational complexity. 
They achieve between 49% and 59 % of relative tcpWER improvement over the NEMO baseline.

r: reference microphone selected by
MaxSNR-based reference channel selection

μ = 0 in our implementation

- We replaced MVDR beamformer with SP-MWF


