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Abstract
In this work, we present a description of SGU domain-adapted
speech enhancement system implementation that enhances the
baseline of the CHiME-7 challenge. We introduce two sig-
nificant modifications. Firstly, we replace the Sudo rm-rf
[1] architecture with the Mossformer [2], which incorporates
convolution-augmented joint local and global self-attention
mechanisms. It performs fully-computed self-attention on lo-
cal chunks and utilizes linearized low-cost self-attention over
the entire sequence. As a second modification, we incorporate
a speech purification technique at the baseline when conduct-
ing self-supervised learning for the student model. This tech-
nique predicts the frame-level SNR of the pseudo-target speech
and utilizes them as weights for the discrepancy function be-
tween the pseudo-target speech and the student model’s esti-
mated speech. Consequently, We achieved an SI-SDR score
of 12.42 on the LibriCHiME-5 dataset for both modifications.
Additionally, implementing the Mossformer architecture on the
CHiME-5 dataset leads to a 2.90 OVRL-MOS and 3.39 SIG-
MOS. Also, the application of the purification method results in
a 3.71 BAK-MOS. Finally, we demonstrate the superior perfor-
mance of our approach compared to the baseline.
Index Terms: speech enhancement, noise suppression, domain
adaptation, CHiME-7 challenge

1. Introduction
Speech enhancement systems that utilize supervised learning
primarily rely on the methodology of extracting clean speech
through a masking network [1, 3, 4, 5]. However, if only unla-
beled noise mixtures are available without clean source speech,
it’s impossible to train such systems. Accordingly, several stud-
ies have proposed unsupervised learning methods for speech en-
hancement system that can employ such noise mixtures in the
training process free from the constraints of clean source speech
[6, 7, 8, 9].

In order to leverage the knowledge of a model trained from
a different domain, the CHiME-7 challenge aims to improve the
noise suppression performance on the in-domain speech by uti-
lizing both an unlabeled in-domain CHiME-5 [10] dataset and
a labeled out-of-domain(OOD) Librimix [11] dataset. RemixIT
pipeline is a baseline provided by the challenge organizers. In
this system, the fully-supervised teacher model is trained by us-
ing Librimix. Then, CHiME-5 data is fed into the frozen teacher
model, which outputs pseudo-target speeches and noise wave-
forms. These are used to create noise-permuted bootstrapped
mixtures, which are then provided to the student model for self-
supervised learning. Additionally, the parameters of the student
model can be transferred back to the teacher model for continu-
ous refinement at the end of each epoch.

Limitation of this system stems from its dependency on
a distillation-based pipeline driven by a teacher model. This
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dependency, coupled with domain imbalance issues, raises
concerns about ensuring the quality of pseudo-target speech.
Specifically, the performance of a teacher model trained on the
speech from a different domain degrades notably when con-
fronted with input from another domain. Deterioration of the
performance is primarily due to the distinctive prosodic infor-
mation, linguistic contextual dependencies, speaker character-
istics, and other inherent attributes that are unique to the train
data.

To overcome this obstacle, we propose an enhanced sys-
tem with two primary modifications implemented within the
RemixIT pipeline. The initial modification consists of imple-
menting the Mossformer architecture in the enhancement sys-
tem’s back-end to efficiently capture the long-range direct inter-
action between the global intermediate feature and the local fea-
ture. The second involves the application of the speech purifica-
tion technique, which focuses on utilizing the speech quality of
pseudo-target speech segments in terms of SNR. This technique
is used to train the student model by emphasizing high-quality
segments. The former enables a more detailed feature design
compared to the baseline model employing a U-net-based mask-
ing network and contributes to the fundamental enhancement of
the performance of the enhancement system. The latter lever-
ages refined prosodic details from pseudo-target speech to facil-
itate performance improvement.

2. System description
The overall system architecture we proposed is illustrated in
Figure 1, representing two distinct speech enhancement system
pipelines operating independently. In Figure 1a, we simply re-
place the Sudo rm -rf with the Mossformer as the back-end of
pipeline. and in Figure 1b, we applied the purification technique
in the form of a discrepancy function between the pseudo-target
speech and the estimated speech of the student model. In 2.1,
we briefly introduce Mossformer, outlining the specific model
structure, and the composition of the masking network. In 2.2,
we explain the assumption of speech purification technique and
its suitability within the RemixIT pipeline. Also we provide
an in-depth exploration of the process of designing the discrep-
ancy function for purification, employing the SNR predictor as
a fundamental element of the technique.

2.1. Mossformer Adaptation

Transformer-based speech enhancement models like Sepformer
[5], have shown impressive results in the task of speech sepa-
ration by intentionally designing long-range interaction among
speech sequences, mainly through a multi-head self-attention
mechanism. Nonetheless, employing this approach results in
significant computational limitations in terms of context size.
And it imposes a negative influence on the long-range feature
interaction because of the temporal dependencies between dis-
tant features. To overcome this issue, the Mossformer architec-
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(a) Mossformer-based system pipeline
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(b) Purification method-based system pipeline

Figure 1: Overview of the systems we have developed. (a) denotes the back-end adjustment utilizing Mossformer. (b) involves the
combination of LSegSNR (segmental SNR loss) and LRemixIT , where The former is calculated by multiplying the segmental SNR with
the weights acquired when pseudo-target speech is used as input for the SNR predictor. The more detailed explanation of segmental
SNR loss can be found in 2.2.3.
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Figure 2: The Mossformer architecture

ture has been proposed.
The masking network of Mossformer incorporates a gated

attention unit structure with joint local and global self-attention.
This design creates a mask that efficiently captures long-range
interaction while removing temporal dependencies. Further-
more, structuring the attention network using a single-head self-
attention not only reduces computational requirements but also
enhances the context capacity. Additionally, a module based on

depth-wise convolution is introduced to extract the key, query,
and value for attention, allowing for a fine-grained design of lo-
cal patterns within the features. Due to the aforementioned ben-
efits, Mossformer achieves state-of-the-art results on the WSJ0-
2/3mix [12] and WHAM!/WHAMR! [13, 14] datasets. We sim-
ply replaced the baseline back-end with the MossFomer in our
pipeline. Corresponding architecture is illustrated in Figure 2.

2.1.1. Architecture

The model is structured with the typical form of a speech sep-
aration model, consisting of an encoder-decoder and a mask-
ing network. The encoder consists of 1D-convolution layer
and ReLU activation, while the decoder is composed of stan-
dard 1D-transposed convolution layers. The encoder transforms
input speech data into hidden representations, which are then
fed into the masking network that generates masks in the hid-
den dimension. Additionally, the generated masks and the en-
coder’s hidden representations are element-wise multiplied and
fed to the decoder. Subsequently, the decoder produces esti-
mated sources. Through this architecture, the model can per-
form the speech enhancement task of separating noise from the
mixture.

The masking net includes normalization, positional encod-
ing, 1x1 convolutions before entering the Mossformer block.
the masking net input is initially normalized and goes through
the procedure of element-wise multiplication with a positional
encoding vector. then it passes the 1x1 convolution followed by
mossformer blocks. The output of the final Mossformer block
is passed through a 1x1 convolution, then extended to the num-
ber of sources intended to be estimated. After that, each source
goes through a 1x1 convolution and is subsequently treated with
a shared Gated Linear Unit. Following this, a final 1x1 convo-
lution is conducted, and the output passes the ReLU activation



to produce non-negative masks for each source.

2.1.2. Mossformer block

Mossformer block, the core part of the model, incorporates
convolution modules, joint local and global single-head self-
attention, and an attentive gating mechanism. The convolution
modules capture local feature patterns using linear layers, SiLU
activation, and 1D depth-wise convolutions.

There are three convolution modules. One of the convolu-
tion modules produces a hidden representation of each block’s
initial input X. Following that, this representation is subject to
the application of scale and offset, along with RoPE [15], re-
sulting in the generation of queries Q, Q′, as well as keys K, K′.
Q′ and K′ are used for global attention, while Q and K are em-
ployed for local attention. The remaining convolution modules
produce values U and V, on which both local and global self-
attention is applied. The outcomes of attention are summed to
generate new attention values, U′ and V′.

The process of joint local and global self-attention is illus-
trated in equation (1). ∗global signifies global attention output,
and ∗local denotes local attention output. h represents the index
of non-overlapping chunk units in local attention. At this point,
U′

local and V′
local are constructed by stacking attention outputs

performed for all chunks. The scaling factors of each attention
method are denoted as β and γ.

V′
global = Q′(βK′TV ), U′

global = Q′(βK′TU )

V′
local,h = ReLU2(γQhKT

h )Vh

U′
local,h = ReLU2(γQhKT

h )Uh

V′ = V′
local + V′

global, U′ = U′
local + U′

global

(1)

U, U′, and V, V′ are utilized in combination with the gat-
ing mechanism, as shown in Equation (2), to form the result-
ing output sequences O′ and O′′. Next, O′ and O′′ proceed
element-wise multiplication and are fed to an additional con-
volution module. The final output sequence O of each block
is shaped by a skip connection between the extra convolution
module’s output and the block’s initial input X. This process is
described in Equation (3), and further details can be found in
[2].

O′ = ϕ(U⊗V′), O′′ = U′⊗V (2)

O = X + ConvM(O′⊗ O′′) (3)

2.2. Speech purification

2.2.1. Assumptions and Suitability

The initial application of the speech purification method in
terms of a self-supervised learning scheme was proposed in the
work by [16]. In previous work, it is assumed that the frames of
noise mixture with high SNR are almost identical to frames of
clean speech. And the target speech is assumed to potentially
contain noise.

The main idea of speech purification is to design the dis-
crepancy function in a way that is more affected by the frames
in the pseudo-target speech with higher SNR values. To achieve
this, in [16], a novel discrepancy function named Segmental
SNR loss is proposed. This loss function efficiently incorpo-
rates the frame-wise SNR of the target speech as a weighting
factor.

Since the teacher model in the RemixIT pipeline is trained
by OOD data, it can’t create a perfectly clear speech for the
target domain. This leads to the target speech characteristics
in [16] resembling the pseudo-target speech produced by the
teacher model. Therefore, during the training of the student
model, we utilize the Segmental SNR loss to our implemented
system pipeline.

2.2.2. SNR predictor

The frame-wise SNR-based weight that is multiplied with the
Segmental SNR loss is derived from a simple regressive model
called the SNR predictor, which is based on an RNN architec-
ture. The SNR predictor is pre-trained and combined with the
whole system pipeline during the student model training while
being kept in a frozen state. The SNR predictor’s training pro-
cess, which is shown in equation (4), is based on a labeled
dataset containing clean speech and noise mixture. s represents
clean speech, n denotes noise, and α signifies the segmental
SNR between the noisy mixture x and s. α̂ refers to the frame-
wise SNR estimated by the SNR predictor given x. Here, h and
Wh respectively represent the SNR predictor and its parame-
ters. The training of the SNR predictor aims to minimize the
MSE between the segmental SNR α and the estimated frame-
wise SNR values α̂.

x = s+ n

α = SegSNR(s, x)
α̂ = h(x;Wh)

Wh ← argmin MSE
Wh

(α̂, α)

(4)

The target segmental SNR(SegSNR) is calculated by the
following equation (5). vi is denoted as the target clean speech,
while ri denotes the residual between vi and the estimated
speech v̂i. Detailed explanations regarding the symbols can be
found in section 2.2.3.

SegSNRj(v, v̂) = 10 log10[

∑Hj+N−1
i=Hj (wi−Hjvi)

2∑Hj+N−1
i=Hj (wi−Hjri)2

] (5)

When training in our pipeline, the SNR predictor takes a
pseudo-target speech as input and makes individual predictions
of SNR for each frame. The resulting logits from the SNR pre-
dictor, known as frame-wise SNR, are processed through a sig-
moid function. Ultimately, these logits are transformed into
weights within the range of 0 to 1. To be specific, frames
predicted with high SNR values will yield weights closer to
1, while frames predicted with low SNR values will result in
weights closer to 0. Then, we multiply the weight with the seg-
mental SNR. Note that the frame-wise SNR weight is computed
using only the pseudo-target speech by SNR predictor, while the
segmental SNR is calculated between the pseudo-target speech
and the estimated speech. As a result, the segmental SNR loss
is obtained.

2.2.3. Segmental SNR loss

The segmental SNR loss is detailed in equation (6). The J , H ,
and N respectively denote the number of frames, hop size, and
frame size, while j refers to the index of a specific frame. wi

represents the Hann window function of length N , s denotes
the pseudo-target speech (not the bootstrapped mixture), and r
is the residual vector between s and the estimated speech. pj de-
notes the weight for the j-th frame. Ultimately, we combine the



LibriCHiME-5 CHiME-5

Model Type SI-SDR OVRL-MOS BAK-MOS SIG-MOS

Supervised 9.39 2.81 3.54 3.23
Sudo rm-rf (baseline) RemixIT 11.70 2.86 3.65 3.28

RemixITvad 11.57 2.85 3.66 3.27

Sudo rm-rfp RemixITvad 12.42 2.88 3.71 3.33

Supervised 10.63 2.88 3.52 3.39
Mossformer RemixIT 12.42 2.90 3.60 3.39

RemixITvad 12.58 2.84 3.48 3.35

Table 1: Overall experiment results of our implemented system pipeline. The baseline system is Sudo rm-rf.
Improved version with speech purification is Sudo rm-rfp. The remaining is the Mossformer implementation system.

segmental SNR loss with the SI-SDR, which is used as the loss
function in the original RemixIT pipeline, with equal weights as
shown in equation (7). We proceeded with training by assign-
ing the same weights to the SI-SDR loss for speech, the SI-SDR
loss for noise, and the segmental SNR loss (λ1=λ2=λ3).

LSegSNR = − 1

J

J−1∑
j=0

pj [10 log10

∑Hj+N−1
i=Hj (wi−Hjsi)

2∑Hj+N−1
i=Hj (wi−Hjri)2

]

(6)
LRemixIT = Lspeech + Lnoise

Ltotal = λ1Lspeech + λ2Lnoise + λ3LsegSNR

λ1 + λ2 + λ3 = 1

(7)

3. Experimental setup
To address the CHiME-7 UDASE challenge, we follow the
guidelines and utilize three different datasets: CHiME-5 (un-
labeled in-domain dataset), Librimix (labeled out-of-domain
dataset), and LibriCHiME-5 (labeled dataset resembling the in-
domain data). We extract subsets for training, development, and
evaluation from each dataset using an official toolkit from the
CHiME-7 challenge’s github1. The model is trained using these
subsets in the original format provided by the toolkit.

To implement the system pipelines described in the Fig-
ure 1, we initially used the provided baseline implementation
to assess its performance in our experimental setup. And we
leveraged two external tools. The first tool we employed is
the Mossformer architecture implementation2, as described in
[2]. During experiments, a large version of Mossformer with
42.1 million parameters was utilized. The second tool inte-
grates an SNR predictor and the segmental SNR loss implemen-
tation3. Additionally, we used publicly available pre-trained
weights of the SNR predictor from the same github3 and froze
them during training. The pre-trained weights were trained us-
ing a mixture of utterances from Librispeech[17] and noises
from MUSAN[18]. More detailed information about the train-
ing scheme of the SNR predictor is described in [16].

Subsequently, we incorporated the aforementioned meth-
ods into the RemixIT baseline system separately. In one
approach, we simply replaced Sudo rm-rf with Mossformer.
While in the other, we applied the purification method with SNR

1https://github.com/UDASE-CHiME2023/baseline
2https://github.com/modelscope/modelscope
3https://github.com/IU-SAIGE/pse

predictor. For the former, we followed the configuration for
the large model as described in [2], while the latter maintained
the same hyperparameters as the baseline setting without setting
200 epochs. During training, we used a learning rate of 1.5e-4
for 100 epochs with the Adam optimizer. After 100 epochs, if
the loss did not improve for 10 consecutive epochs, we reduced
the learning rate by a factor of 3. In both approaches, we main-
tained the same learning rate throughout the training process.
All experiments were conducted on six NVIDIA A100 GPUs
with 80 GB of memory.

4. Result
4.1. Performance of the proposed systems

Table 1 shows our experiment results. We used self-supervised
learning with two subsets: unlabeled-10s (RemixIT setting) and
vad-10s (RemixITvad setting) from CHiME-5. The baseline
Sudo rm-rf experiment yielded an SI-SDR score of 11.57 using
the vad-10s subset. This was achieved by training the models
from scratch without altering the provided code by the chal-
lenge organizers. As incorporating purification techniques, the
SI-SDR score improved to 12.42. Additionally, the correspond-
ing systems achieved the highest BAK-MOS score of 3.71.

Mossformer outperforms Sudo rm-rf in SI-SDR with an im-
pressive score of 12.58 in RemixITvad setting. In RemixIT set-
ting, Mossformer also achieved the highest scores, recording
3.39 for SIG-MOS and 2.90 for OVRL-MOS, respectively. De-
spite having significantly more parameters and slower training
speeds compared to Sudo rm-rf, latency is not a constraint in
this challenge, so we proposed both system pipelines.

Consequently, we submitted two systems for the chal-
lenge. ISDS1 utilized the Mossformer model in the RemixIT
setting, trained on unlabeled-10s data. For ISDS2, we em-
ployed the Sudo rm-rf model with the purification method in
the RemixITvad setting.

4.2. Results of the challenge

The evaluation of systems developed for the CHiME-7 UDASE
challenge involves two main stages: objective and subjec-
tive evaluation. In the first stage, objective evaluation was
performed for all submissions, assessing the SI-SDR for the
LibriCHiME-5 eval set and the DNS-MOS performance on the
subset of the CHiME-5 eval set. The results are explained in
section 4.2.1. The second stage involved a listening test for
the output of the top four systems selected from the first stage,



LibriCHiME-5 CHiME-5
System SI-SDR (dB) OVRL BAK SIG
N&B 13.0 3.07 3.93 3.39
ISDS1 12.4 2.90 3.60 3.39
ISDS2 12.4 2.88 3.70 3.32

RemixIT-VAD 10.1 2.84 3.62 3.28
RemixIT 9.4 2.82 3.64 3.26

CMGAN-base 7.8 3.40 3.97 3.76
OOD teacher 7.8 2.88 3.59 3.33

Input 6.6 2.84 2.92 3.48
CMGAN-FT 4.7 3.55 3.93 3.92
Table 2: Objective evaluation results for all submissions

(sorted by SI-SDR scores).

corresponding to other subsets of the CHiME-5 eval set. Ul-
timately, the ranking of systems was determined based on the
DNS-MOS score obtained by each system.

Except to the baseline systems (Input, OOD teacher,
RemixIT, and RemixIT-VAD) and our proposed systems
(ISDS1 and ISDS2), there are three different submissions. The
N&B system integrated the MetricGAN [19] discriminator and
Uformer [20] as the back-end enhancement model. This system
included a UNA-GAN [21] application with the CHiME-5 in-
domain noise extracted by VAD to generate an in-domain noise
mixture. Furthermore, perceptual contrast stretching (PCS)
[22] was employed as a pre-and post-processing method. The
CMGAN-base system, similar to N&B, used MetricGAN but
employed Conformer [23] as the back-end enhancement model.
CMGAN-FT is the fine-tuned version of CMGAN-base using
the LibriCHiME-5 dev set.

4.2.1. Objective evaluation

Table 2 represents the evaluation results of objective metrics
for all submissions. From the perspective of SI-SDR, N&B
achieved the highest score of 13.0, while in terms of DNS-MOS,
CMGAN-FT performed best with OVRL-MOS and SIG-MOS
scores of 3.55 and 3.92, respectively. In the case of BAK-MOS,
CMGAN-base outperformed others with a score of 3.97. Our
proposed system, ISDS1, ranked second in SI-SDR and fourth
in OVRL-MOS scores.

Note that our proposed systems did not proceed with data
augmentation as the other three submissions did for the general-
ization of the system. Specifically, ISDS1 solely utilized the at-
tention structure within Mossformer, while ISDS2 ensured gen-
eralization ability through the use of auxiliary purification SNR
loss. This differs from the approaches used by N&B, which
conducted in-domain noise mixture generation, and CMGAN-
base and FT, which generated enhanced spectrograms using
magnitude masks. Hence, we can expect our proposed systems
to perform better in terms of objective metrics with additional
data augmentation. Furthermore, by integrating the modifica-
tions made to ISDS1 and ISDS2, we can anticipate further per-
formance improvements.

Following the first-stage evaluation results, our proposed
ISDS1 system, which incorporates Mossformer adaptation, has
been chosen for a listening test. However, since the ISDS2 sys-
tem also demonstrated identical SI-SDR scores and very similar
DNS-MOS scores to ISDS1, we believe there is a need to con-
duct a listening test for ISDS2 as well.

Ranking System Mean 95% CI Median
1 N&B 4.30 0.01 4.38
2 ISDS1 3.08 0.01 3.00
3 RemixIT-VAD 2.97 0.01 2.88
4 CMGAN-FT 2.75 0.01 2.63
5 Input 2.20 0.01 2.19

Table 3: Evaluation result of BAK-MOS

Ranking System Mean 95% CI Median
1 Input 3.97 0.01 4.00
2 ISDS1 3.43 0.01 3.56
3 N&B 3.41 0.01 3.63
4 RemixIT-VAD 3.02 0.02 3.25
5 CMGAN-FT 2.63 0.01 2.63

Table 4: Evaluation result of SIG-MOS

Ranking System Mean 95% CI Median
1 N&B 3.11 0.01 3.25
2 ISDS1 2.75 0.01 2.75
3 Input 2.68 0.01 2.75
4 RemixIT-VAD 2.45 0.01 2.50
5 CMGAN-FT 2.14 0.01 2.13

Table 5: Evaluation result of OVLR-MOS

4.2.2. Listening test

The subject evaluation involved 32 participants split into 4 pan-
els, assessing 128 audio samples under 5 experimental condi-
tions. Participants sat in a listening booth wearing headphones
and listened to short 4-5 second speech samples.

As a result of the conducted listening test, we confirmed
that our system secured the second position in all sub-evaluation
metrics of DNS-MOS, as demonstrated in Tables 3, 4, and 5.
In the case of BAK-MOS, the N&B system, which utilized in-
domain noise extracted from the CHiME-5 train set for mix-
ture generation, outperformed others significantly. However,
for SIG-MOS, the ISDS1 system slightly edged ahead of the
competition. This underscores the superiority of Mossformer’s
attentive gating mechanism module in capturing attributes of
speech signals compared to the other competing submission
systems. Finally, through the evaluation results, our proposed
system achieved second place in this challenge.

5. Conclusions
Our speech enhancement system showed considerable perfor-
mance improvement and surpassed the baseline system through
two key modifications: the integration of the Mossformer archi-
tecture and the employment of the speech purification method.

Through the UDASE challenge, we were able to evalu-
ate the performance of integrating the Mossformer model into
the RemixIT pipeline. Moreover, we demonstrated that per-
formance improvement can be achieved not through commonly
used data augmentation techniques but rather by adding an aux-
iliary loss function associated with the SNR of each segment of
speech during system training, implicitly enhancing the gener-
alization performance of the baseline system. As part of future
work, we intend to implement and assess the performance of a
system that combines the two modifications we proposed.
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