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Abstract
The CHiME-7 unsupervised domain adaptation speech en-
hancement (UDASE) challenge targets domain adaptation to
unlabelled speech data. This paper describes the University
of Sheffield team’s system submitted to the challenge. A
generative adversarial network (GAN) methodology based on
a conformer-based metric GAN (CMGAN) is employed as
opposed to the unsupervised RemixIT strategy used in the
CHiME-7 baseline system. The discriminator of the GAN is
trained to predict the output score of a Deep Noise Suppres-
sion Mean Opinion Score (DNSMOS) metric. Additional data
augmentation strategies are employed which provide the dis-
criminator with historical training data outputs as well as more
diverse training examples from an additional pseudo-generator.
The proposed approach, denoted as CMGAN+/+, achieves sig-
nificant improvement in DNSMOS evaluation metrics with the
best proposed system achieving 3.51 OVR-MOS, a 24% im-
provement over the baseline.
Index Terms: speech enhancement, model generalisation, gen-
erative adversarial networks, conformer, metric prediction

1. Introduction
As work and lifestyle patterns shift towards more remote, on-
line working, it is essential that voice and video communication
software is able to reduce environmental distortion in transmit-
ted audio. As such, speech enhancement techniques, especially
those utilising neural networks are a high priority area of ac-
tive research. The CHiME-7 unsupervised domain adaptation
speech enhancement (UDASE) challenge [1] was proposed to
improve speech enhancement research [2–5] using real-world
training data in an unsupervised way. In supervised neural net-
work based speech enhancement systems, there is often a mis-
match between the synthetic data used to train the system and
real-world recordings. This can lead to poor performance of
such systems in the wild even if evaluation metrics on synthetic
data are high [6]. To further compound this problem, metrics
which are designed to measure the quality often do not corre-
late strongly with actual human assessment of speech audio in
specific scenarios [7], and often require access to clean refer-
ence/label audio which may not be readily available for real-life
recordings.
Recently, several new metrics [8–11] have been proposed which
attempt to directly predict human quality assessment in a non-
intrusive way, i.e. without need for a reference signal. These
take the form of neural networks trained using datasets of dis-
torted audio to predict a quality label assigned to the audio
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by the human assessors. Self-supervised speech representa-
tions (SSSRs) have been found to be useful feature represen-
tations for the prediction of audio quality [12, 13].
The baseline system for the CHiME-7 UDASE challenge ad-
dresses the speech enhancment task using a RemixIT [14]
framework wherein a teacher network is trained using labelled
data, and a student network trained on real data uses inference
of the teacher network as pseudo-labels in its loss function.
The speech enhancement problem is modelled as source sepa-
ration task, using the ‘Sudo rm -rf’ [15] model structure. While
both, student and teacher networks show good performance on
synthetic labelled testsets in terms of Scale Invariant Signal-
Distortion Ratio (SI-SDR), degradation in quality in terms of
the DNSMOS non-intrusive quality metric is observed on the
challenge evaluation sets, compared to the unprocessed input
audio in real-world in-domain recordings [1].
This paper comprises a description and in-depth evaluation
of the University of Sheffield UDASE challenge submission.
Rather than using an unsupervised methodology, the proposed
approach for this submission uses a supervised GAN-based
methodology. Motivated by Mean Opinion Scores (MOSs) be-
ing the main ranking metrics of the challenge, the GAN discrim-
inator is trained to predict a MOS-related metric, i.e. DNSMOS.
Historical training data from a conventional generator and an
additional pseudo-generator is used to augment the training data
diversity.
The remainder of this paper is structured as follows. The input
feature generation by the Hidden Unit BERT (HuBERT) [16]
SSSR model as well as the DNSMOS [8] metric prediction net-
work are described in Section 2 and Section 3, respectively. The
proposed CMGAN+/+ model is described in Section 4. Exper-
imental setup and results are discussed in Section 5 and Sec-
tion 6, respectively. Finally, Section 7 draws some conclusions
from the findings of the paper.

2. HuBERT Encoder Feature
Representations

Recent work in metric prediction [12, 13] shows that SSSRs
are useful as feature extractors for capturing quality-related in-
formation about speech audio. As such, the proposed system
makes use of the HuBERT [16] SSSR as a feature extractor for
the metric prediction component of the proposed framework.
HuBERT, like most SSSRs which take time domain signals as
input, consists of two distinct network stages, as shown in Fig-
ure 1. The first stage HFE(·) comprises several 1D convolu-
tional layers which map the input time domain audio s[n] into a
2D representation. The second stage HOL(·) consists of a num-
ber of transformer [17] layers, which takes the output of the first
stage as input. For a input time domain signal s[n], two repre-
sentations SFE (after the feature encoder (FE) stage) and SOL

(at the final output (OL) layer) can thus be obtained from the
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Figure 1: Representations extracted from HuBERT model
stages.

HuBERT model:

SFE = HFE(s[n]) (1)
SOL = HOL(HFE(s[n])) (2)

Recent work in speech enhancement [13,18,19] have found that
the outputs of HuBERT’s HFE(·) stage are particularly use-
ful for capturing quality-related information. The outputs of
HFE(·) are 2D representations with dimensions 512×T where
T depends on the length of the input audio in seconds. The
HuBERT model used in this work is trained on 960 hours of
audio-book recordings from the LibriSpeech [20] dataset, and
is sourced from the FairSeq GitHub repository1. The HuBERT
encoder representation SFE in (1) is used as a feature extrac-
tor, and its parameters are not updated during in the proposed
framework.

3. DNSMOS
The Deep Noise Suppression Mean Opinion Score
(DNSMOS) [8] is a non-intrusive speech quality metric.
It consists of a neural network which was trained to predict
real human MOS ratings of input audio signals. As it is
non-intrusive, it is particularly useful for assessing the quality
of real recordings such as in the CHiME-7 UDASE challenge
testset, and was one of the evaluation metrics used in assessing
the entries to the challenge. For an input time domain speech
signal s[n] DNSMOS returns three values

QSIG, QBAK, QOVR = DNSMOS(s[n]), (3)

where QSIG, QBAK and QOVR are each values between 1 and 5
which represent the estimated speech quality, background noise
quality and overall quality, respectively (higher values indicat-
ing better quality). In the following Q is used to represent one
of these values and Q′ is the respective value normalized be-
tween 0 and 1.
While DNSMOS is a neural network meaning it is theoretically
possible to backpropagate through it and use it directly in a loss
function, it is not publicly available in this form. In order to
incorporate DNSMOS as a loss function for speech enhance-
ment in this work, a non-intrusive metric prediction discrimina-
tor [21] is trained to create a differentiable copy of the original
implementation of DNSMOS provided in the CHIME-7 base-
line system. This has the added benefit of allowing for an ad-
versarial training of the metric prediction network in a GAN
setting [22].

4. Speech Enhancement System Description
The overall architecture of the proposed system is largely based
on the CMGAN framework proposed in [23], but with two ex-
tensions proposed in [24] and [25]. The first extension is to train

1https://github.com/facebookresearch/fairseq

the discriminator D on a historical set of past generator outputs
every epoch. The second extension is to train D to predict the
metric score of noisy, clean and enhanced audio, as well as the
output of a secondary pseudo-generator network N which is
designed to increase the range of metric values observed by D.
This work introduces a new structure for D, as well as a new
input feature which is derived from a pre-trained SSSR.

4.1. Conformer-based Generator

4.1.1. Conformer-based Generator Network Structure

The Conformer model generator G is based on the best perform-
ing CMGAN configuration in [23]. The network itself com-
bines mapping and masking approaches for spectral speech en-
hancement, utilizing a conformer [26] based bottleneck. The
model’s input are short-time Fourier transform (STFT) compo-
nents of the noisy audio XRe and XIm with a reasonably high
temporal resolution (hop size of 6 ms) with a 50% overlap, and
a fast Fourier transform (FFT) length of 400 samples at a sam-
pling rate of fs = 16000 Hz. The output of the model are the
enhanced real and imaginary STFT components ŜRe and ŜIm

from which the enhanced time domain audio ŝ[n] is obtained by
inverse short-time Fourier transform (ISTFT).

4.1.2. Generator Loss Function

The model is trained with a multi-term loss function

LG = γ1LGGAN + γ2LGTime + γ3LGTF , (4)

where γ1, γ2, γ3 are hyperparameter weights. LGGAN is defined
as

LGGAN = E{(D(ŜFE)− 1)2}, (5)

which represents an assessment of the enhanced signal by the
metric Discriminator D. The 1 in (5) represents the highest
possible DNSMOS value of 5 after being normalized between
0 and 1.
LGTime is a mean absolute error between the enhanced and
clean time domain mixtures

LGTime = E{||s− ŝ||1}. (6)

Finally, LGTF itself consists of two weighted components

LGTF = αLGMag + (1− α)LGRI , (7)

where α is a hyperparameter weight between the terms. LGMag

represents the distance between magnitude spectrogram repre-
sentations of the enhanced and clean mixtures

LGMag = E{||SMag − ŜMag||2}, (8)

with ŜMag defined as

ŜMag =

√
Ŝ2
Re + Ŝ2

Im, (9)

and SMag defined accordingly. LGRI represents a similar com-
parison between the enhanced and clean real and imaginary
STFT components.

LGRI = E{||SRe − ŜRe||2}+ E{||SIm − ŜIm||2} (10)

With the exception of (5), all terms of LG require access to clean
label/reference audio s[n]. The feature transformations and loss
terms of LG are visualised in Figure 2.

https://github.com/facebookresearch/fairseq
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Figure 2: Visualisation training of generator G and generator loss LG in (4), (inference path shown in red, backpropagation in blue).

4.1.3. Block Processing for Continuous Processing

Due to the quadratic time-complexity of the transformer layers
in the Conformer models, processing long sequences can be un-
feasible due to high memory requirements. Transformers are
also typically unsuitable for continuous processing as the en-
tire sequence is required to compute self-attention. To address
these issues input signals are processed in overlapping blocks
of 4 s for evaluation and inference as this has been shown to be
in an optimal signal length range for attention-based enhance-
ment models [27]. A 50% overlap with a Hann window is used
to cross-fade each block with one another. Models are trained
with 4 s signal length limits [27] similar to the baseline.

4.2. Metric Estimation Discriminator

The discriminator D part of the GAN structure is trained to pre-
dict a normalised DNSMOS [8] score for a given input signal.
Inference of D is used in (5) as one of the loss terms of G and
as the sole loss function of N in (12), enforcing an optimisation
towards the target metric.
Experiments with training D to predict one of the outputs of
DNSMOS (i.e QSIG, QBAK or QOVR) are also conducted.

4.2.1. Discriminator Network Stucture

The discriminator network structure consists of 2 Bi-Directional
Long Short-Term Memory (BLSTM) layers followed by a sin-
gle attention feed-forward layer with a sigmoid activation, simi-
lar to the network proposed in [12]. The input to D is the output
of the HuBERT feature encoder HFE(·).

4.2.2. Discriminator Loss Function

Within each epoch, first the Discriminator D is trained on the
current training elements:

LD,MG+ = E{(D(SFE)−Q′(s))2

+ (D(ŜFE)−Q′(ŝ))2

+ (D(XFE)−Q′(x))2

+D(YFE)−Q′(y))2} (11)

where SFE, XFE, ŜFE and YFE are HuBERT encoder repre-
sentations, u.e. outputs of HFE(·), of the clean audio mixture
s, the noisy mixture x, the mixture as enhanced by G, ŝ, and
the mixture as enhanced by N , y. This is followed by a his-
torical training stage, where D is trained to predict the metric
scores from past outputs of the generative networks G and N .
Q′(·) is the true DNSMOS score of the input audio, normalized
between 0 and 1.

4.2.3. Historical Training

The training procedure of D uses historical training data as it
was first proposed in the MetricGAN+ framework [24]. In this
stage, a sample of enhanced audio output from past epochs of
G and N are used to train D. The aim of this is to prevent D
from ‘forgetting how to assess audio which is dissimilar to the
current outputs of the enhancement network. In each epoch, D
is trained using a randomly selected 10% of the outputs of the
generator models from past epochs.

4.3. Metric Data Augmentation Pseudo-Generator

As first proposed in [25], an additional speech enhancement net-
work N is trained, and its outputs y used to train the metric
prediction discriminator D (last term in (11)) . This model is
trained solely using the GAN loss in (5), similar to the original
MetricGAN framework,

LNGAN = E{(D(YFE)− w)2}, (12)

where w is a hyperparameter value which corresponds to the
target normalised DNSMOS score for which the output audio
of N is being trained to reach.
Its network structure is based on the original MetricGAN en-
hancement model, consisting of a BLSTM which operates on a
magnitude spectrogram representation of the input, followed by
3 linear layers. Its output is a magnitude mask which is mul-
tiplied by the input noisy spectrogram to produce an enhanced
spectrogram YSPEC. A time domain signal y[n] is constructed
by the overlap-add method using the original noisy phase.

5. Experiment Setup
The framework is trained on the simulated LibriMix dataset
[28], using the same data loading configuration as the teacher
network in the baseline system [1]. The labelled LibriMix train-
ing set consists of 33900 clean/noisy audio pairs, with the clean
speech sourced from the LibriSpeech [20] dataset and the added
noise from WHAM! [29] dataset. The framework is trained for
200 epochs, on a random sample of 100 training elements from
the train set in each epoch. The Adam optimizer is used for all
three networks, with learning rates of 0.005, 0.005 and 0.001
for G,N and D respectively. Frameworks are trained where D
is trained to predict target metric QSIG, QBAK and QOVR.
Following the configuration in the original CMGAN system,
γ1, γ2, γ3 in (4) are set to 1, 0.2 and 0.05 respectively, while
α in (7) is set to 0.9. An additional simulation completely dis-
abling the GAN component of the framework, i.e. setting γ3 to
0, as well as training solely using the GAN loss by setting γ1
and γ2 to 0 and γ3 to 1 are performed. Additionally, we ex-
periment with setting w, the hyperparameter which controls the



Table 1: SI-SDR results on the reverberant LibriCHiME eval
set.

Model w Q SI-SDR (dB)
unprocessed – – 6.59
Sudo rm -rf [15] – – 7.8
RemixIT [14] – – 9.44
RemixIT [14] w/ VAD – – 10.05
CMGAN+/+ 1.00 SIG 4.71

fine-tuned 3.55
CMGAN+/+ 0.80 SIG 4.53

fine-tuned 3.55
CMGAN+/+ 0.45 SIG 5.98

fine-tuned 4.30
CMGAN+/+ 1.00 BAK 6.95

fine-tuned 6.89
CMGAN+/+ 0.80 BAK 6.31

fine-tuned 7.39
CMGAN+/+ 0.45 BAK 6.42

fine-tuned 5.84
CMGAN+/+ 1.00 OVR 7.41

fine-tuned 4.29
CMGAN+/+ 0.80 OVR 1.19

fine-tuned 5.15
CMGAN+/+ 0.45 OVR 4.75

fine-tuned 6.78
no GAN term – – 6.61
GAN only 1.00 SIG -30.97
GAN only 1.00 BAK -67.28
GAN only 1.00 OVR -41.60

objective of N in (12), to 1.0, 0.8 and 0.45.
At evaluation time, the best-performing epoch in terms of the
target metric on the LibriMix validation set is loaded. Note that
only the labelled portion of the challenge training data is used
in taining, unlike the baseline system. Additionally,results are
reported for the best-performing epoch after further fine-tuning
for 20 epochs on the labelled LibriCHiME dev set which con-
sists is similar to LibriMix but with the noise sourced from the
real CHiME recordings.

6. Results

Table 1 shows the results of the baseline systems and the
proposed systems (for different w in (12) and different target
metrics Q from (3)) on the simulated Reverberant LibriCHiME
evaluation set in terms of Scale Invariant Signal-Distortion
Ratio (SI-SDR) score. Here, the proposed system shows
generally lower performance than the baselines, with the
exception of the models which are trained with QBAK as their
target metric. The model trained with a w value of 0.8 with
QBAK as the objective when fine-tuned in the LibriCHiME dev
set was able to achieve an average SI-SDR score of 7.41 dB.
Similarly, the model trained with a w value of 1 and QOVR

achieves an average SI-SDR score of 7.41 dB. The relatively
poor overall performance by the proposed systems in terms
of SI-SDR as evaluation metric can perhaps be explained by
the fact that the baseline systems all explicitly use SI-SDR as
a loss function during training; our system which incorporates
SI-SDR loss directly outperforms the baseline in this measure
as shown in the following.
Table 2 show results of the baseline systems and the pro-
posed systems on the real CHiME evaluation set in terms
of DNSMOS scores. Here, the proposed systems all show

Table 2: DNSMOS results on CHiME5 eval set.

Model w Q OVR BAK SIG
unprocessed - 2.84 2.92 3.48
Sudo rm -rf [15] - 2.88 3.59 3.33
RemixIT [14] - 2.82 3.64 3.26
RemixIT [14] w/ VAD - 2.84 3.62 3.28
CMGAN+/+ 1.00 SIG 3.29 3.85 3.76

fine-tuned 3.45 3.90 3.98
CMGAN+/+ 0.80 SIG 3.20 3.70 3.68

fine-tuned 3.37 3.46 3.86
CMGAN+/+ 0.45 SIG 3.33 3.81 3.80

fine-tuned 3.49 3.90 3.98
CMGAN+/+ 1.00 BAK 3.12 3.90 3.39

fine-tuned 3.28 4.08 3.29
CMGAN+/+ 0.80 BAK 3.06 3.82 3.32

fine-tuned 3.15 3.95 3.07
CMGAN+/+ 0.45 BAK 2.87 3.74 3.18

fine-tuned 3.08 3.87 3.23
CMGAN+/+ 1.00 OVR 3.51 3.99 3.78

fine-tuned 2.60 3.25 3.14
CMGAN+/+ 0.80 OVR 3.37 3.87 3.56

fine-tuned 2.75 3.27 3.27
CMGAN+/+ 0.45 OVR 3.23 3.94 3.33

fine-tuned 2.84 3.24 3.26
no GAN term – – 2.87 3.54 3.34
GAN only 1.00 SIG 2.66 1.58 3.72
GAN only 1.00 BAK 2.67 3.78 2.41
GAN only 1.00 OVR 2.70 3.68 3.00

a marked improvement over the baseline systems, with an
improvement in terms of the target metric after fine-tuning
in most cases. Furthermore, the inclusion of the GAN term
in (4) also has a significant effect on this measure, as shown
by the performance of the proposed system without the GAN
term. Unlike QSIG and QBAK fine-tuning on the LibriCHiME
dev set degrades performance on the models trained towards
QOVR. Generally, the models trained with a w value of 1
perform better than the other values; this may be caused by the
difficulty of the task of N to enhance or ’de-enhance’ the input
audio representation.
The results for the model trained solely using the GAN term
towards QSIG are shown in the last row of Table 2. While
this model shows good performance on its target metric, it
scores rather poorly on the other two DNSMOS components.
Furthermore, when played back, audio enhanced by this system
is significantly distorted, with barely any of the original signal
retained. The models trained only using the GAN term towards
QBAK and QSIG are similarly distorted. Figure 3 shows
exemplarily shows spectrograms for noisy (upper panel in
Figure 3) and enhanced audio by the system with QSIG as
target metric and a w of 1 (second panel), the system with no
GAN term (3rd panel) and the system using the GAN term
only (also with QSIG, w of 1, lower panel in Figure 3). In
the lower panel of Figure 3, the significant distortion of the
signal by the GAN-only model is visible, despite it achieving
a similar DNSMOS SIG improvement relative to the noisy
input as the other enhancement models. This suggests that the
model has learned to ‘enhance’ the input audio in a way to
trick the DNSMOS SIG metric into awarding it high scores.
The reason as to why DNSMOS awards such high scores to
significantly distorted audio remains unknown; it is possible
that as DNSMOS is a data-driven system itself, the problem
arises from its neural network not ever observing audio which
has been distorted in such a way during its own training,
resulting in it assigning an effectively meaningless score.



Figure 3: Noisy and enhanced spectrograms of audio file
S01 P01 0.wav from the CHiME-5 evaluation set.

6.1. Challenge Results

Table 3 compares the challenge entries in terms of DNSMOS
and SI-SDR on the sim challenge evaluation sets.

Table 3: Comparison with other challenge entries ranked by
DNSMOS OVR score.

CHiME-5 Reverb Libri-
(DNSMOS) CHiME-5

Rank System OVRL BAK SIG SI-SDR (dB)
1 CMGAN+/+ fine 3.55 3.93 3.92 4.7
2 CMGAN+/+ 3.40 3.97 3.76 7.8
3 NWPU/ByteAudio 3.07 3.93 3.39 13.0
4 Sogang ISDS1 2.90 3.60 3.39 12.4
5 Sogang ISDS2 2.88 3.70 3.32 12.4
6 OOD teacher 2.88 3.59 3.33 7.8
7 RemixIT-VAD 2.84 3.62 3.28 10.1
8 Unprocessed 2.84 2.92 3.48 6.6
9 RemixIT 2.82 3.64 3.26 9.4

The submitted system uses DNSMOS SIG as its target met-
ric with a w value of 1. Note that the results shown here for
our submitted systems differ slightly from those in the previ-
ous section, as they come from different runs of the model on a
different random seed. Both our base and fine-tuned models sig-
nificantly outperform all other entries in terms of DNSMOS on
the real CHiME-5 evaluation set, but show lower performance
for SI-SDR as target metric. After evaluation by the challenge

organisers in terms of DNSMOS and SI-SDR as shown in Ta-
ble 3, the two best-performing systems for each of the two tar-
get metrics (including the proposed system) were evaluated in
listening tests.Table 4 shows the results listening-tests of audio
enhanced by the top-performing systems, as well as the unpro-
cessed audio. Interestingly, the proposed system shows lower
performance in the listening tests than expected from the high
scores in terms of DNSMOS in Table 4.

Table 4: Comparison of top-performing challenge entries on
listening tests with human participants, ranked by OVRL MOS.

CHiME-5 (Listening Tests)
Rank System OVRL BAK SIG

1 NWPU/ByteAudio 3.11 4.30 3.41
2 Sogang ISDS1 2.75 3.08 3.43
3 Unprocessed 2.68 2.20 3.97
4 RemixIT-VAD 2.45 2.97 3.02
5 CMGAN+/+ fine 2.14 2.75 2.63

7. Conclusions
In this paper, the University of Sheffield’s CMGAN+/+ speech
enhancement system for the CHiME-7 UDASE challenge is
described. The system uses a GAN-based model with dis-
criminator input data augmentation strategies to improve metric
prediction performance. Results on the unlabelled CHiME-5
evaluation set demonstrate improvements in DNSMOS evalua-
tion metrics, significantly outperforming the baseline system in
OVR, BAK and SIG measures. However, this does not directly
translate to high ratings in listening tests with humans. By train-
ing solely using a metric optimisation loss, possible flaws in the
metric being optimised towards have to be considered.
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