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Abstract
We introduce a sophisticated multi-speaker speech data simu-
lator, specifically engineered to generate multi-speaker speech
recordings. A notable feature of this simulator is its capacity
to modulate the distribution of silence and overlap via the ad-
justment of statistical parameters. This capability offers a tai-
lored training environment for developing neural models suited
for speaker diarization and voice activity detection. The ac-
quisition of substantial datasets for speaker diarization often
presents a significant challenge, particularly in multi-speaker
scenarios. Furthermore, the precise time stamp annotation of
speech data is a critical factor for training both speaker diariza-
tion and voice activity detection. Our proposed multi-speaker
simulator tackles these problems by generating large-scale au-
dio mixtures that maintain statistical properties closely aligned
with the input parameters. We demonstrate that the proposed
multi-speaker simulator generates audio mixtures with statisti-
cal properties that closely align with the input parameters de-
rived from real-world statistics. Additionally, we present the
effectiveness of speaker diarization and voice activity detection
models, which have been trained exclusively on the generated
simulated datasets.
Index Terms: speaker diarization, data simulator, multi-
speaker data simulation

1. Introduction
The evolution of deep neural network models within the realm
of speech signal processing has significantly enhanced the per-
formance and precision of the machine learning systems [1].
These advances have facilitated an end-to-end training ap-
proach, allowing the entire model to be optimized, transform-
ing raw audio input into meaningful labels. However, achieving
competitive accuracies with these neural models depends on the
procurement of a substantial amount of data. This data is inte-
gral to ensuring generalizability and improving accuracy.

Obtaining sufficient training data in certain domains poses
a significant challenge due to an array of factors. In speech
signal processing field, the challenges are concentrated on pri-
vacy concerns, data-imbalance issues, limited availability and
the financial cost of data collection. The task becomes even
more demanding when it involves speaker diarization. This in-
creased difficulty is primarily because speaker diarization re-
quires a complex dataset with multiple speakers, embodying
a broad range of variabilities. These variabilities encompass
aspects such as gender, acoustic conditions, and conversation
types. Hence, the development and optimization of effective
deep neural network models for speech signal processing, par-
ticularly speaker diarization, hinges on overcoming these chal-
lenges related to data collection.

Figure 1: Property-aware multispeaker data simulator that gen-
erates targeted amount of pause and overlap.

In response to the challenge of data scarcity in specific
fields, the machine learning community has adopted synthetic
data, which mitigates the aforementioned issues to a certain
degree. In order for synthetic data to be effective, the gener-
ated data should capture the characteristics and patterns of real-
world data (realism) while maintaining a broad range of varia-
tions (diversity). Also, accurate and consistent labeling of the
synthetic dataset is essential. Additionally, in speaker diariza-
tion or Voice Activity Detection (VAD), the diversity of speak-
ers, sentence length, and frequency of speaker turns in conver-
sations should be well balanced, mirroring real-world data.

Until now, in the fields of speech recognition and speaker
diarization, most published articles have focused on data aug-
mentation techniques, such as the widely used SpecAugment
[2] or the data augmentation speech recognition toolkit [3, 4].
There exist simulation tools (e.g., one featured in [5]) initially
developed for source separation but often utilized in training
speaker diarization systems [5, 6, 7]. Recently, a multi-speaker
data simulator for speaker end-to-end speaker diarization also
appeared in [8, 9], which tries to create mixtures that resem-
ble the pauses and overlaps of the real-world audio recordings.
While the data simulation techniques introduced in [6, 9] serve
their purpose very well, these data simulation techniques tend
to employ a range of parameters which do not explicitly corre-
late with specific properties such as pauses and overlaps within
the resulting simulated speech recordings. Consequently, even
though the previously proposed simulation systems accept nu-
merous parameters, their lack of control over the generated sig-
nal could lead to unpredictability in the amount of silence and
overlap.

In this work, we introduce a dynamic sampling technique
that constantly reflects the discrepancy between the generated
data and the targeted amount of overlap speech and silence em-
ploying probabilistic models for precision and control. We re-
fer to such feature as “Property-aware simulation”. As illus-
trated in Fig. 1, the proposed multi-speaker data simulator takes
speech signal and its alignment (time stamps) and blends these
signals to simulate multi-speaker audio recordings. Herein, we
elaborate on the guiding principles for our data simulation sys-
tems:
• The simulated sessions are designed to incorporate the re-

quired amount of silence, overlap, and sentence length based
on statistical analysis.



Figure 2: Flowchart of the proposed multi-speaker data simu-
lator

• The speech signal generated by the simulation system ex-
hibits a significant level of variability across sessions, includ-
ing overlap ratio, silence ratio, and average sentence length.

• The simulation system employs parallel processing tech-
niques, leveraging multiple graphics processing units
(GPUs), enabling large-scale data generation at higher speed.

• The implementation of the data simulator is open-source and
publicly available online.1

2. System description

2.1. Major parameters

A flow diagram of the proposed system is shown in Fig. 2. In
the following sections we describe the main parameters and im-
plementation details. Note that the following parameters are the
most crucial subset of parameters that are determined before
starting data simulation:
• Session length LS : A floating point number that determines

the total duration of the created session in second.
• Number of sessions NS : An integer to determine the number

of session to be simulated, so that the total duration of the
generated data is LS ·NS seconds.

• Number of speakers Nspk: An integer number that deter-
mines how many speakers in a session.

• Turn Probability pturn: A floating point number that deter-
mines the speaker turn change from one to another.

• Overlap ratio mean µo and variance σ2
o : Parameters that de-

termine the distribution of overlap.
• Silence ratio mean µs and variance σ2

s : Parameters that de-
termine the distribution of silence.

The following are random variables that are created at each
session:
• Sentence length sl determines how many words are included

in a newly added utterance (also referred to as a sentence).
• Silence length m̃s determines the duration between sen-

tences.
• Overlap length m̃o determines how much portion of speech

is overlapped with the following speech segment.

2.2. Session Parameter Sampling

The following variables are sampled during the very first step
named “Sample Session Parameters” in Fig. 2.

1https://github.com/NVIDIA/NeMo/main/tools/
speech_data_simulator

• Session random seed sampling: Set a random seed value
which would be used to create a reproducible simulation en-
vironment.

• Set speaker dominance: Call a method that randomly deter-
mines the dominance of each speaker in the session.

• Speaker volumes: Set the volume level of each speaker in the
session.

• Setting Session Silence and Overlap Mean: To control the
amount of silence and overlap in a session, we can set the
mean values for these parameters using the following equa-
tion, which describes the method of moment estimates [10]
for a Beta distribution2 :

α{o,s} =
µ2
{o,s} · (1− µ{o,s})

σ2
{o,s}

− µ{o,s} (1)

β{o,s} =
µ{o,s} · (1− µ{o,s})

2

σ2
{o,s}

− (1− µ{o,s}) (2)

Here, µ represents the mean ratio of silence or overlap and σ
represents its variance. These parameters are fed by the user
to control the overall silence and overlap ratio. To ensure that
α{o,s}>0 and β{o,s}>0, the input mean and variance values
should be within the following range:{

0 < µ{o,s} < 1

0 < σ2
{o,s} ≤ µ{o,s}(1− µ{o,s})

(3)

We can then sample the session silence mean Xµs and ses-
sion overlap mean Xµo from the Beta distribution, as fol-
lows:

Xµs ∼ Beta(αs, βs), (4)
Xµo ∼ Beta(αo, βo). (5)

Here, αs and βs are based on the mean µs and variance σs

for the silence ratio in a session, while αo and βo are based
on the mean µo and variance σo for the overlap speech ratio
in a session. By setting the session silence and overlap mean
values in this way, we can control the amount of silence and
overlap in a session, which follows Beta distribution.

2.3. Sampling Routine for Data simulation
The following provides a description of each step involved in
generating a simulated multi-speaker audio recording. In this
section: ns denotes the current sample count, sspk the speaker
index, and L̃S the running length of the audio signal thus far.
2.3.1. Data synthesis loop
As described in the Algorithm 1, the running length of the cur-
rent session L̃S is monitored at every loop and while the condi-
tion L̃S < LS is held, the sampling process is continued until
the running length L̃S exceeds the desired length LS .
2.3.2. Sample Speaker ID
The turn probability pturn is compared with a value drawn from
a uniform distribution.

U(0, 1) < pturn (6)

If the sampled value is less than the pturn value, a randomly cho-
sen speaker is selected from the pre-determined speaker group,
for example Sspks = {s1, s2, . . . , sNspk}.

2Beta distribution is employed due to its compatibility with the range
of overlap and silence ratios, which fall within its support of [0, 1], and
its capacity to model skewed distributions[11].



2.3.3. Build Sentence

The parameter sl, which represents sentence length, is assumed
to follow a negative binomial distribution. This approach is
based on the probabilistic model for word-level sentence length
(measured in words) of human language as detailed in [12].

sl ∼ NB(kw, pw) (7)

PNB(X = kw) =

(
X + kw − 1

kw − 1

)
pkw
w (1− pw)

X (8)

Based on the sentence length sl and speaker (also referred as
speaker turn) sspk, we randomly select the given number of
words from the forced-alignment data. This process is denoted
as BUILDSENTENCE() function in the Algorithm 1.

L̃spch, L̃sil = BUILDSENTENCE(sl, sspk). (9)

2.3.4. Overlap-Silence Selector

In this step, the data-simulator system compares the current si-
lence ratio to the current overlap ratio. Thus, at each utterance
loop, it switches to either silence or overlap mode according to
the amount of the gap between current ratio and session mean
in configurations.

∆S =
L̃sil

L̃S

− µs (10)

∆O =
Õspch

L̃spch

− µo (11)

We employ two different quantities: silence discrepancy ∆S
represents the gap between desired silence time and the current
silence time and overlap discrepancy ∆O represents which is
the gap between desired overlap speech and the current overlap
speech time. We choose whichever is smaller than other.
2.3.5. Estimating the Required Overlap Amount

Overlap m̃o is calculated so that the newly added amount of
overlap matches the expected amount of Xµo .

Xµo =
m̃o + Õspch

L̃spch − m̃o

(12)

Afterwards, we solve for m̃o and assign it the value derived
from the following equation:

m̃o ←
Xµo L̃spch − Õspch

Xµo + 1
(13)

2.3.6. Estimating the Required Silence Amount

We set up an equation that matches the expected amount of si-
lence after adding the silence (denoted by m̃s) with the sampled
mean Xµs as follows:

Xµs =
m̃s + L̃sil

m̃s + L̃S

(14)

Solve for m̃s then we assign the following value:

m̃s ←
L̃sil −Xµs L̃S

Xµs − 1
(15)

Algorithm 1 Dialogue Simulation

Require: LS , σ2
d µo, µs, pturn σ

2
o , σ2

s ∈ R and Nspk ∈ N
p ∈ (0, 1] ∨ µd, µo, µs, σ

2
d, σ

2
o , σ

2
s ∈ [0, 1]

(αs, βs)←
(
µ2
s
(1−µs)

σ2
s
− µs, µs

(1−µs)
2

σ2
s
− (1− µs)

)
Xµs ∼ Beta(αs, βs) ▷ Sample session silence rate mean

(αo, βo)←
(
µ2
o
(1−µo)

σ2
o
− µo, µo

(1−µo)
2

σ2
o
− (1− µo)

)
Xµo ∼ Beta(αo, βo) ▷ Sample session overlap rate mean
while L̃S < LS do

if U(0, 1) < pturn then
sspk = GETNEXTSPEAKER(Sspks, sspk)

end if
sl ∼ NB(kw, pw)

L̃spch, L̃sil← BUILDSENTENCE(sl, sspk)
∆S ← L̃sil

L̃S
− µs ▷ Silence deficiency

∆O ← Õspch

L̃spch
− µo ▷ Overlap deficiency

if ∆S ≤ ∆O then
m̃s ← L̃sil−Xµs L̃S

Xµs−1

ks ← m̃2
s/σ

2
s

θs ← σ2
s/m̃s

s∆t ∼ Γ(ks, θs)
ADDSENTENCE(s∆t, 0)

else if ∆S > ∆O then
m̃o ←

Xµo L̃spch−Õspch

Xµo+1

ko ← m̃2
o/σ

2
o

θo ← σ2
o/m̃o

o∆t ∼ Γ(ko, θo)
ADDSENTENCE(0, o∆t)

end if
end while

2.3.7. Sampling overlap and silence amount
For both silence and overlap cases, we employ gamma distri-
bution since gamma distribution is continuous version of nega-
tive binomial distribution that is used to model sentence length
in [12] Thus, we model the distribution of the two continuous
quantity, silence and overlap length, as following equations:

k ← m̃2/σ2 (16)

θ ← σ2/m̃ (17)
x∆t ∼ Γ(k, θ), (18)

where x∆t is the sampled silence amount s∆t in silence case
and overlap amount o∆t in overlap case.

3. Experimental Results
3.1. Data simulation test
In this section, we test whether the proposed data simulator
can simulate the multi speaker data with the given parameters.
To check wether the simulator generates data which has the
distribution we intended to create, we compare the simulated
data with the statistics extracted from real-world datasets. The
overlap mean, overlap mean variance, silence mean and silence
mean var values are collected from the real-world datasets and
fed to the simulator.

Table 1 presents a quantitative comparison of observed val-
ues derived from both the simulated and real-world datasets for
train split of AMI(MixHeadSet) [13] and CallHome American
English Speech (CHAES) [14], highlighting key metrics such



Table 1: Simulated vs. Real-world Dataset Statistics
Dataset Type Mean Var.

CH. Simul. observed sil. ratio 0.1409 0.0045
CHAES real-world sil. ratio 0.1473 0.0061

CH. Simul. observed ovl. ratio 0.0759 0.0019
CHAES real-world ovl. ratio 0.0754 0.0020

AMI Simul. observed sil. ratio 0.1804 0.0077
AMI real-world sil. ratio 0.1814 0.0081

AMI. Simul. observed ovl. ratio 0.1711 0.0092
AMI real-world ovl. ratio 0.1473 0.0047

(a) AMI-train 139 sessions (b) CH109 - 109 sessions
Figure 3: Histograms: Real-World (Magenta) vs. Simulated
(Blue) Data; Overlaps in Purple.
as the mean and variance of silence (sil.) and overlap (ovl.) ra-
tios. Notwithstanding certain disparities between the statistics
discerned from the simulated dataset and those from the real-
world dataset, the simulation effectively echoes the trends char-
acteristic of the original statistics. For an expanded analysis of
this simulation’s distribution, please refer to Fig. 3, which ex-
hibits histograms contrasting the original and simulated datasets
in terms of overlap and silence mean/variance.
3.2. Voice Activity Detector Model
We trained a modified version of the Voice Activity Detection
(VAD) model 3 proposed in [15], using our simulated data. As
source datasets, we employed Fisher English Corpus [16] and
LibriSpeech Corpus[17]. For Fisher dataset, we use energy
based VAD to filter out salient speech samples and randomly
segmented audio in a range of [0.2, 0.8] seconds word length.
For LibriSpeech, we use the forced alignment result in [18].
We utilize two datasets: Dataset D1 comprises 0.5k hours of
data from each of the LibriSpeech and Fisher English datasets.
Dataset D2 consists of 1k hours from each of the LibriSpeech
and Fisher datasets, supplemented by an additional 2.5k hours
of multilingual data we have gathered from [19, 20, 21, 22].

The performance of this modified model across various
speech datasets is outlined in Table 2a, where area under the
receiver operating characteristic (AUROC) is used as the met-
ric. For the DIHARD3 [23] dataset, we excluded Conversa-
tional Telephonic Speech (CTS) and computed a macro-average
across ten different domains, as the CTS domain is derived from
the Fisher dataset, which possesses significantly loose times-
tamps. Through these modifications, we achieved an overall
high performance with our model on the four datasets, espe-
cially with the application of noise augmentation and gain per-
turbation.

Several significant observations arise from our experiments
with VAD models using the simulated dataset. Firstly, loose
timestamps, which encapsulate non-speech signals at the start

3https://catalog.ngc.nvidia.com/orgs/nvidia/
teams/nemo/models/vad_multilingual_frame_
marblenet

Table 2: Evaluation of models on different parameters
(a) AUROC for VAD task

Training Data DH3 VoxConv AMI CH109
Dataset Split dev dev dev -

D1,µs=0.5 87.71 96.15 95.7 88.07
D1,µs=0.3 89.83 96.19 94.69 91.04

+ Gain. Aug. 93.7 96.02 96.55 88.73
+ D2 + Noise. Aug. 93.96 97.42 96.04 92.43

(b) DER(%) on Diarization Datasets

Training Data DH3 VoxConv AMI CH-109
Dataset Split eval test eval -

LibriVox-3Kh µo=0.07 14.49 6.01 15.96 9.94
LibriVox-3Kh µo=0.15 14.38 5.72 15.89 10.03

(c) DER(%) on CHiME7 Datasets

Training Data Chime6 Dipco Mixer6
Dataset Split dev dev dev

LibriVox-3Kh µo=0.07 45.01 32.50 17.35
LibriVox-3Kh µo=0.15 44.37 31.07 17.13

and end of each segment, can markedly degrade the perfor-
mance of VAD. This issue is exacerbated by data augmenta-
tion, as the model is then trained with the added noise at the
boundaries of each segment. Secondly, gain perturbation is a
necessary consideration as the VAD model frequently overlooks
low-volume speech signals. To mitigate this, the model should
be trained with substantial variation in gain during the creation
of audio mixtures. Lastly, the addition of overlapping speech is
also essential for enhancing performance, as overlapping speech
can lead to an increase in missed detections.
3.3. Speaker Diarization Model
As in the previous section, we train a modified speaker diariza-
tion model, based on [24], alongside the speaker embedding
model from [25]. The experiment utilizes 1k hours of Lib-
riSpeech and 2k hours of VoxCeleb 1 and 2 [26]. We use
the same type of time stamps and random word-level alignment
as in the Fisher dataset for Voice Activity Detection (VAD).
For diarization evaluation, we use the VAD model from Ta-
ble 2a. Diarization error rate (DER) is calculated using a
0.25 sec collar, with overlap considered. DER is assessed on
DIHARD3, VoxConverse-3 [27], AMI eval(test)-sets, and 2-
speaker CHAES subset, CH109. Tables 2b and 2c show per-
formance variations with different synthetic dataset settings.

4. Conclusions
In this paper, we introduce a property-aware data simulator ca-
pable of reflecting statistics provided by the user or extracted
from real-world data. The proposed data simulator utilizes an
online sampling technique, allowing the system to generate a
predetermined quantity of silence and overlap speech while ad-
hering to the given probability distributions. Consequently, the
generated dataset can be leveraged to train VAD models and
speaker diarization models, providing highly accurate ground-
truth timestamps, which is a critical element for both speech
activity detection and speaker diarization. Potential future re-
search could involve adapting this system for online genera-
tion, whereby users could supply a source dataset and generate
the training dataset on-the-fly. We anticipate that the proposed
data simulator will be adopted by the speech signal processing
community for training neural models related to speech signals,
which necessitate accurate ground truth timestamps and highly
customizable speech training data.
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