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Abstract

This paper reports the IACAS-Thinkit’s system for the 7th
CHiIiME challenge’s task 1: distant automatic speech transcrip-
tion and segmentation with multiple recording devices. Our sys-
tem includes training data augmentation, target speaker voice
activity detection (TS-VAD) based speaker diarization (SD),
time-domain speakerbeam based single channel target speaker
extraction (TSE), guided source separation (GSS) based multi-
channel speech separation and WavLM based speech recogni-
tion. Evaluated on the CHiME-7 evaluation set, our system
for the main track achieves 25.0% macro-average Diarization-
attributed Word Error Rate (DA-WER), with an absolute reduc-
tion of 30.27% over the baseline system; our system for the
far-field acoustic robustness sub-track achieves 20.5% macro-
average DA-WER, with an absolute reduction of 13.75% over
the baseline system.

1. System Overview

The CHiME-7 Distant Automatic Speech Recognition (DASR)
task focuses on achieving precise speech recognition and
speaker diarization under challenging far-field multi-device
conditions [1]. In order to address this formidable challenge,
our system is structured around three primary modules, namely,
speaker diarization, speech separation, and automatic speech
recognition. The speech separation module can be further dis-
sected into two components: single-channel target speaker ex-
traction (TSE) and multi-channel speech separation. We also
enhance the accuracy of our speech recognition outputs by
rescoring them with a language model. It is noteworthy that our
system is specifically tailored to cater to both the main track and
sub-track of the CHIME-7 DASR task. An illustrative represen-
tation of our system can be found in Figure 1.
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Figure 1: Overview of the IACAS-Thinkit’s system

2. Speaker diarization
2.1. Model Configuration

Our TS-VAD differs from the original TS-VAD [2] using i-
vector [3] by employing ECAPA-TDNN [4] based x-vector as
the speaker embedding. Firstly, we use an ECAPA-TDNN
which has the same structure as the speaker embedding model to
extract the frame-level speaker embeddings. A statistical pool-
ing layer is employed on the frame-level speaker embeddings
every ten frames because speaker diarization does not need such
a high temporal resolution [5]. The output of the statistical
pooling layer is named segment-level speaker embeddings. Sec-
ondly, the segment-level speaker embeddings are concatenated
with the target-speaker embeddings. It is worth noting that the
target-speaker embeddings are estimated iteratively in the same
way as [2]. A two-layer BILSTM detects the states of each
speaker separately then the detection states are concatenated
and fed into a BiLSTM layer to find the relationship between
different speakers. Finally, a linear layer with sigmoid func-
tion outputs per frame target-speaker voice activity. The system
diagram is depicted in Figure 2.
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Figure 2: The system diagram of ECAPA-TDNN based TS-VAD.



2.2. Training Data and Training Details
2.2.1. Speaker embedding model

In order to achieve better generalization on the CHiME-7
dataset, we generate a speaker identification training set by ex-
tracting single-speaker speech from CHiME-7 training set ac-
cording to the manual annotation. The speaker embedding
model is pretrained on VoxCelebl [6] and VoxCeleb2 [7] and
finetuned on Voxcelebl and CHiME-7 training set.

2.2.2. TS-VAD

Data augmentation plays an important role in the performance
of TS-VAD. On the one hand, we use slot-filling to gener-
ate simulated training data. We remove speech regions in the
CHiME-6 [8] training set and fill the regions with speech from
LibriSpeech [9], VoxCelebl [6] and VoxCeleb2 [7]. Addition-
ally, we add background noise and reverberation to the simu-
lated training data. The background noise is extracted from the
non-speech regions from the CHiME-6 training dataset, while
the room impulse response is sampled from the SLR28 RIR
and Noise Database [10]. We generate 6000 hours of simu-
lated training data in this way. On the other hand, we perform
random orthogonal transforms to the frame-level speaker em-
beddings and target-speaker embeddings to avoid overfitting to
some specific regions in the speaker embedding space [S][11].
The probability of performing random orthogonal transforms to
each batch is set to 0.4.

There are three stages in the training phase [12]. In the first
stage, the front-end ECAPA-TDNN’s parameters are copied
from the pretrained speaker embedding model. We freeze the
front end and train the backend BiLSTM layers with a learning
rate of 0.0001 for 20 epochs on the simulated training dataset.
In the second stage, we unfreeze the front-end model and train
the whole model on the simulated training dataset for another
2 epochs with a learning rate of 0.0001. In the third stage, we
finetune the whole model on the CHiME-6 training set for 2
epochs with a learning rate of 0.00001.

In addition, we perform self-supervised domain adaptation
on the development set and evaluation set. We tune the model
for 30 steps with a learning rate of 0.00001 on each session
in the development set and evaluation set. The training target
is the DOVER-lap output and the target-speaker embedding is
also extracted from the diarization output.

2.3. Inference

We employ several post-processing strategies in the inference
phase of TS-VAD, including merging two speech segments sep-
arated by a pause shorter than 0.6 seconds, deleting all speech
segments shorter than 0.2 seconds, and binarization by a thresh-
old of 0.4 and 5-tap median filtering. In order to make use
of multi-channel audio in the development set and evaluation
set, we perform DOVER-lap on the output of different channels
[13]. The results of the development set are shown in Table 1.
We use the baseline diarization results as the initial diarization.
We delete speakers who speak less than 100 seconds and speak
ten times less than the speaker who speaks the most in the ses-
sion. The speaker diarization results are shown in Table 1.

Table 1: Speaker diarization results on Dev&Eval [1].

Dev Eval

Methodology  Scenario DER JER DER JER

CHiME-6  40.0 51.1 56.3 62.5
DiPCo 29.8 414 279 409

Baseline Mixer6  16.6 228 93 11.0
Macro 28.8 38.5 31.2 38.2
CHIME-6 252 294 27.3 31.4
DiPCo 221 231 224 280
Ours

Mixer 6 14.7  20.8 7.3 8.0

Macro 20.7 245 190 225

3. Speech Sepatation
3.1. Single Channel Target Speaker Extraction

We perform single-channel target speaker extraction (TSE)
with time-domain speakerbeam [14]. We choose time-domain
speakerbeam because it is a classical TSE method, and it
achieves better performance than the traditional frequency-
domain speakerbeam.

The training data is crucial for the performance of the time-
domain speakerbeam on the CHiME-7 dataset. At first, we only
trained the model on Libri3mix, and it led to bad generaliza-
tion on the CHiME-7 dataset. In order to solve the problem, for
each session in the CHiME-7 development and evaluation set,
we extract single speaker segments according to the TS-VAD
diarization output and combine them randomly to generate the
simulated training set in an on-the-fly manner. As for the model
training, we first train time-domain speakerbeam on Libri3mix
[15] for 18 epochs. Next, we finetune the model on the sim-
ulated training set for 30 epochs. Note that we train a TSE
model for each session in the development and evaluation sets.
We managed to enhance the TSE model’s performance on the
CHiME-7 dataset significantly in this manner. After obtaining
the single speaker signal from the mixed signal with the time-
domain speakerbeam, we use it to calculate the time-frequency
spectral mask for each speaker.

3.2. Multi Channel Source Separation with GSS

For each session on dev/eval separately, based on the RTTM
results provided by the SD system, we extract the speech of
each speaker without overlap and concatenate them as the reg-
istered speech for the TSE model. For each utterance extracted
by the SD system, we first use the TSE model to separate each
speaker’s speech. Then, we get the time-frequency spectral
mask for each speaker by performing FFT to initialize the GSS
iteration.

We present the results of applying TSE init to the original
in Table 2. We show the results on the CHiME-6 Dev set. The
ASR model used is trained on the original training sets.

We can see that using TSE’s pre-separation result to initial-
ize GSS could bring about 4% relative WER reduction.

4. Automatic Speech Recognition

4.1. Acoustic Model (AM)

For AM, we adopt the WavLM (Large)[16] for all our experi-
ments since its performance beats the other SSL models. We



Table 2: Contribution of Speech Separation to WER on CHIiME-
6 Dev.

Seperation WER %
P S02  S09 ALL
GSS 38.1 33.6 353

+TSEinit 37.6 31.6 33.9

CHiME-6 (GSS)

Training

Data
DiPCo (GSS)

Figure 3: Training Sets of the AM

CHiME-6 (VC)

first finetune the pretrained model on the re-separated training
sets and then perform continuous unsupervised adaptation[17]
for each session on eval sets separately.

The composition of training sets of the AM is shown in
Figure 3. We first re-separate the development sets and put half
of the original development sets into the training set to train
a trial ASR system to determine the best number of steps for
training. Then, we add all the speech from the dev sets to train
the model to such a number of steps to prevent over-fitting.
For chime6 and dipco, we used the data enhanced by GSS and
performed 3-times speed perturbation on these sets (29.6h *
3 from the original chime6 training set and 6.1h * 3 from the
original chime6 dev set). For Mixer6, we choose the mdm and
ihm speech from the original training set without augmentation
and subsample to 54.8h, plus the enhanced dev set without
speed perturbation (10.9h). For DiPCO, we use all the dev
sets with 3-times speed perturbation, and 2-times upsample
(3.3h * 3 * 2). To extend the robustness of the ASR system
across speakers, we also added 20h generated data from voice
conversion (VC). The VC model is trained on the Librispeech
corpus and converts utterances in CHiMEG6’s ihm training set
to speakers in the Librispeech corpus. For training the trial
ASR system, we use sessions of S09, S33, S29, 20090714-
134807-LDC-120290, 20090716-155120-LDC-120269,
20090717-113617-LDC-120278, 20090717-133033-LDC-
120311, 20090722-115429-LDC-120271, 20090722-154451-
LDC-120225, 20090723-111806-LDC-120290, 20090729-
155715-LDC-120311, 20090803-111429-LDC-120225,
20090803-120934-LDC-120271, 20090804-165853-LDC-
120269 and 20090805-110532-LDC-120225 as the Resep-Dev
set and the remaining as the training set. We figure out the best
number of training steps of the AM on our Resep-Dev set, and
finally, we add all of the 213.5h speech both from training sets
and development sets for training and trained such number of
steps (40k updates) to circumvent over-fitting. The number
of adaptation steps is also determined in such a way, and we
submitted the results of adapted 30, 50, and 90 steps as the
three system results.

4.2. Language Model (LM)

For LM, we use all the text from the training set and devel-
opment sets (1.2M words) to train a 4-gram model. The 4-
gram model is interpolated with a 4-gram model trained on Lib-

rispeech’s text (9.6M words). We also trained a cross-utterance
transformer LM on the training text from original splits (1.0M
words). During training and inference of the transformer LM,
We concatenate the past two segments of the same speaker’s text
and add an additional symbol between utterances to leverage the
long-context information. The final decoding is performed by
first beam-search on CTC posteriors combined with the n-gram
model. We decode 60 best results and finally rescore the results
to get 1-best with transformer LM. The results are shown in Ta-
ble 3. The ASR model used is trained on the original training
sets.

Table 3: Contribution of the long-context NNLM to WER on
CHIME-7 Dev.

Seperation WER%
P CHIME-6 DipCo Mixer6 Macro
WavLM-+ngram 35.7 39.4 14.3 29.8
+NNLM 35.3 38.6 14.4 29.4

5. Results & Discussion

The ASR results of the first system (used to determine the best
number of training and adaptation) on our re-separated dev set
(Resep-Dev) are shown in Table 4. The final system is trained
on all the training and development sets.

Table 4: The trial ASR system’s results on the re-separated Dev.
set

Resep-Dev (WER %)

Scenario ¢ 1 vack  Main-Track

CHiME-6 18.0 35.7
DiPCo 25.8 32.3
Mixer 6 10.7 12.5
Macro 18.2 26.8

We demonstrate the final results of our system for the main
track and the far-field acoustic robustness sub-track in Table 5.

Table 5: System performance results on the evaluation sets of
CHIME-7

WER %
Scenario Main Track Sub-Track
Baseline Ours Baseline  Ours
CHIiME-6 77.4 31.1 35.5 23.9
DiPCo 54.7 25.4 36.3 20.5
Mixer 6 33.7 18.5 28.6 17.0
Macro 55.3 25.0 33.4 20.5

Overall, our system achieved a relative WER reduction of
54.8% on the main track and a relative WER reduction of 38.6%
on the far-field acoustic robustness sub-track. By comparing the
results from the main track and the sub-track, we could find SD
benefits CHIME-6 and DiPCo sets most but have limited impact
on the Mixer 6 set since the Mixer 6 set has a lower overlap
ratio. The CHiME-6 set is the most challenging set among the
three sets, both for the diarization system and the ASR system.



6. Conclusions

This paper outlines the IACAS-Thinkit system for the CHIME-
7 challenge’s task 1: distant automatic speech transcription
and segmentation with multiple recording devices. Our sys-
tem encompasses three integral components: speaker diariza-
tion, speech separation, and automatic speech recognition. A
key observation from our efforts is the paramount importance
of data augmentation within the context of this challenge. Fur-
thermore, we leverage self-supervised domain adaptation tech-
niques, substantially enhancing our final results. Additionally,
we introduce certain modifications to the model architecture,
which also leads to noticeable improvements. In summary, our
system’s performance in the CHIME-7 DASR task was notable.
In the main track, our system secured the second position with
a DA-WER of 26.8% on the development set and 25.0% on the
evaluation set. In the far-field acoustic robustness sub-track, our
system achieved a DA-WER of 18.2% on the development set
and 20.5% on the evaluation set, positioning us at the fourth
rank.
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