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Abstract

This technical report details our submission system to the
CHiME-7 DASR Challenge, which focuses on speaker diariza-
tion and speech recognition under complex multi-speaker sce-
narios. Additionally, it also evaluates the efficiency of systems
in handling diverse array devices. To address these issues, we
implemented an end-to-end speaker diarization system and in-
troduced a rectification strategy based on multi-channel spatial
information. This approach significantly diminished the word
error rates (WER). In terms of recognition, we utilized publicly
available pre-trained models as the foundational models to train
our end-to-end speech recognition models. Our system attained
a Macro-averaged diarization-attributed WER (DA-WER) of
21.01% on the CHiME-7 evaluation set, which signifies a rela-
tive improvement of 62.04% over the official baseline system.
Index Terms: CHiME challenge, speech recognition, multi-
channel, speaker diarization, speech separation.

1. Introduction
In real-world scenarios, speech signals are often accompanied
by diverse environmental noises and interferences. These vari-
ations can include human voices, traffic sounds, machine noise,
etc. Therefore, effectively processing and separating the speech
signal of the target person in an environment with multiple
sources is a challenging problem. Moreover, automatic speech
recognition (ASR) in distant-talking scenarios using micro-
phone arrays has become an integral part of our daily lives. The
convenience and flexibility offered by portable devices support-
ing voice applications with multiple microphones have further
emphasized its significance [1]. The CHiME (Computational
Hearing in Multisource Environments) series challenge aims to
tackle these issues and applications in multi-source speech sig-
nal processing. It motivates researchers to create novel algo-
rithms and technologies that improve performance.

The CHiME (1-4) [2, 3, 4] series was launched to investi-
gate the impact of background noises in far-field scenarios and
address ASR challenges in real-world applications. A common
approach to enhance ASR robustness is using multi-channel
speech enhancement as the front-end system. This category in-
cludes representative algorithms such as multi-channel Wiener
filtering [5], blind source separation methods [6, 7, 8, 9], and
beamforming methods [10, 11, 12]. Beamforming gained pop-
ularity in the CHiME-3 Challenge. In the CHiME-4 Challenge,
the best system introduced a novel approach that combines con-
ventional multi-channel speech enhancement with deep learn-
ing methods [13] to improve multi-channel speech recognition.
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The CHiME-5 [14] and CHiME-6 [15] have recently pro-
vided the first large-scale corpus of real multi-talker conversa-
tional speech recorded via commercially available microphone
arrays in multiple realistic homes [14]. In this challenge, the
best system [16] proposed a speaker-dependent speech sepa-
ration framework, exploiting advantages of both deep learn-
ing based methods and conventional preprocessing techniques.
And the CHiME-6 challenge revisits the previous CHiME-5
challenge and further considers the problem of distant multi-
microphone conversational speech diarization and recognition
in everyday home environments. In this challenge, the best sys-
tem of track 1 [17] proposed a space-and-speaker-aware itera-
tive mask estimation (SSA-IME) approach to improving com-
plex angular central Gaussian distributions (cACGMM) based
beamforming in an iterative manner by leveraging upon the
complementary information obtained from SSA-based regres-
sion. The best system for track 2, STC [18] proposed a novel
Target-Speaker Voice Activity Detection (TS-VAD) approach,
which directly solves the diarization problem and allows per-
forming GSS on top of the diarized segments.

Although the CHiME competition has achieved significant
achievements in the field of multi-source speech processing, its
systems are developed based on limited data and rules. Some
algorithms that have won in the CHiME competition have per-
formed well, but their generalization performance on other sim-
ilar tasks is limited. Therefore, establishing a universal system
in a wide range of real-world environments and providing reli-
able ASR performance even under adverse acoustic conditions
is an important issue.

The latest CHiME-7 [19] task involves using multiple
recording devices for joint ASR and speaker separation in far-
field environments, which may be heterogeneous. Unlike pre-
vious challenges, this challenge allows the use of external data
and pre-trained models, leveraging the latest advancements in
self-supervised learning and supervised learning based on DNN
for speech separation and enhancement (SSE). The system
evaluation includes three different scenarios (CHiME-6 [15],
DiPCo [20], and Mixer 6 [21]), with the goal of developing a
single system that can adapt to different array geometries and
use cases without any prior information while maintaining gen-
eralization capability.

This article presents our work on multi-channel processing,
data augmentation, speaker diarization system, and acoustic
model in the CHiME-7 Distant Automatic Speech Recognition
(DASR) challenge. Specifically: (1) We used a semi-supervised
approach to utilize unlabeled data from Mixer 6 and VoxCeleb
1&2 [22]. (2) We have developed a channel selection method
that adapts to various array geometries by utilizing signal to in-
terference plus noise ratio (SINR). (3) Recognizing the impor-
tance of spatial information in multi-channel speaker diarization
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Figure 1: Data augmentation pipeline.

systems, we developed a speaker diarization system that utilizes
long-term spatial information iteratively. (4) By jointly fine-
tuning self-supervised learning representation (SSLR), speech
enhancement (SE), speaker recognition (SR), and ASR mod-
ules, we significantly improved ASR’s ability to enhance target
speaker performance.

2. System Description
2.1. Multi-channel processing

In terms of multi-channel processing, we followed the official
GPU-accelerated guided source separation (GSS) framework
[19, 23] and made improvements in certain modules, including
cross-channel synchronization, the automatic channel selection
and beamforming algorithms.

To prevent misalignments between different channels, We
first calculate the lag of inter-channel correlation to perform
cross-channel synchronization. In order to uniformly process
multi-channel audio under different array topologies and obtain
high-quality signals, we propose an automatic channel selec-
tion method based on “virtual” array signal to interference plus
noise ratio (SINR).

It operates on two assumptions. On the one hand, the en-
velope variance (EV) method [19] can accurately rank the dis-
tances between channels and the current target speaker. Sim-
ilar variance values mean that these channels may come from
nearby locations. On the other hand, we assume that N chan-
nels are uniformly distributed in all directions in space.

First, the values calculated using the EV method are sorted
by channels. Assuming each “virtual” subarray contains K
channels for partitioning, we obtain ⌈N/K⌉ “virtual” subar-
rays. By using the beamformed audio output from “virtual”
subarrays, we can calculate the average SINR and sort the sub-
arrays accordingly. After conducting experiments on the devel-
opment set, it was determined that a value of K = 5 yielded
the highest average performance across all three sets. Accord-
ing to the selected subarray ratio, different versions of audio
can be output. Specifically, we have chosen the ratio of sin-
gle “virtual” array, front 50% “virtual” array, and EV method
for the first 80% channels. In the beamforming section, we ex-
plore various algorithms such as minimum variance distortion-
less response (MVDR) beamformer and generalized eigenvalue
decompositio (GEVD) beamformer. Furthermore, we discov-
ered that the data processed using various algorithm settings is
highly valuable during the final fusion stage.
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Figure 2: Multi-stage diarization inference pipeline.

2.2. Data Augmentation

As shown in Figure 1, the entire training data originates from
two parts, one is the CHiME-7 DASR “Official” data [24], and
the other is the external data [25] allowed under official rules.
We conducted a series of simulation operations based on these
data to expand the data size further.

For the first part, we directly take the manual segment
boundaries of CHiME-6 as a diarization training target and
multi-type GSS initialization. Since there are only transcripts
and segment boundaries of subjects in the Mixer 6 training set,
we first generate pseudo-labels (segment boundaries only) for
interviewers by voice activity detection (VAD)-based and neu-
ral speaker diarization-based methods [26]. Only the interview
part of Mixer 6 is used to generate pseudo-labels and train di-
arization and ASR models.

For the second part, multi-speaker (from 2 to 4 speakers)
room-like multi-channel (4 channels) dialogue is simulated 1

using LibriSpeech [27] and VoxCeleb 1&2 [22]. The simulated
audio has also been added with noise extracted from non-speech
segments of the CHiME-6 and Mixer 6 trainsets and music from
MUSAN [28]. We use CHiME-6 and Mixer 6 training data and
LibriSpeech multi-channel simulation data for neural speaker
diarization model training.

For ASR model training, since text labels of Voxceleb 1&2
are unusable, we first use the model trained on the other two
datasets for label annotation. The CHiME-7 DASR ”Official”
data was expanded with multi-type GSS to extend the audio di-
versity and further expanded with short utterances concatenated
to long utterances and triple-speed perturbations. External data
parts were produced with only a single kind of audio via the
standard GSS. The specific composition of the training data is
shown in Table 1.

Table 1: Composition and scale of training data.

Datasets
Original

Duration (h)
Channel
Number

Diarization
Training (h)

ASR
Training (h)

CHiME-6 30 24 720 380
Mixer 6 60 10 600 90

LibriSpeech 960 4 3840 930
VoxCeleb 1&2 2700 4 - 2400

2.3. Speaker Diarization

The speaker diarization system is mainly based on Neural
Speaker Diarization Using Memory-Aware Multi-Speaker Em-

1https://github.com/jsalt2020-asrdiar/jsalt2020 simulate



bedding (NSD-MA-MSE) [29]. In addition to taking i-vectors
as speaker embedding input in TS-VAD [30], Memory-Aware
Multi-Speaker Embedding (MA-MSE) is concatenated to facil-
itate a dynamical refinement of speaker embedding to reduce
a potential data mismatch between the speaker embedding ex-
traction and the neural speaker diarization network. Besides, we
preform a sequence-to-sequence (Seq2Seq) framework in NSD-
MA-MSE as in Seq2Seq-TSVAD [31]. The model is trained
on both real and simulated data as mentioned in Section 2.2.
During the inference stage, model parameters are averaged over
multiple checkpoints. Speech probabilities averaged across all
channels are used to generate diarization results via threshold-
ing and post-processing.

The NSD-MA-MSE based network also requires an initial-
ized diarization result to generate a speaker mask matrix, where
each element represents the speech/silence probability of the
target speaker at each frame. With the initialization of more
accurate diarization results, the decoding of the diarization sys-
tem may generate more precise outcomes. This is the motiva-
tion behind our adoption of a multi-stage iterative approach. As
shown in Figure 2, the entire diarization inference pipeline con-
sists of multi-stage NSD-MA-MSE decoding with increasingly
accurate initialized diarization inputs.

In the first stage, the clustering-based speaker diarization
(CSD) is performed on audio from EV based channel selection.
Top-6 audio channels are selected to perform VAD using a base-
line VAD model fine-tuned by CHiME-6 and Mixer 6 data.

In the second stage, we perform complex Angular Central
Gaussian Mixture Model (cACGMM) rectification with a win-
dow length of 120 seconds and a window shift of 60 seconds on
the original audio by taking the previous NSD-MA-MSE decod-
ing result as the initialization binary mask. By thresholding on
the spectrum mask of cACGMM, we get the second initialized
diarization result. Through this method, we can make certain
adjustments to the fusion results of single channel diarization
using spatial information on all channels.

In the third stage, we perform CSD again on the official
GSS-separated audio which takes the second stage NSD-MA-
MSE decoding result. Our goal is to generate better clustering
results by using separated audio with less noise and irrelevant
speaker interference.

In the fourth stage, we once again perform cACGMM rec-
tification on the forced alignment results. The text is generated
by ASR using official GSS separated audio. HMM is obtained
from kaldi tools on ASR training data. The final diarization
results are used to generate multi-type test audio using multi-
channel processing in Section 2.1.

2.4. Speech Recognition

We propose a speaker-adaptive implicit target speaker enhance-
ment (SAIS) approach, which is based on speaker adaptive au-
tomatic speech recognition (SA-ASR). This approach aims to
efficiently optimize both SR and ASR models in order to tackle
the challenge of multi-talker recognition tasks.

The underlying principle of SA-ASR is to simply concate-
nate the pre-trained speaker embeddings as part of the ASR in-
put features with acoustic features. To optimize both speaker
recognition (SR) and automatic speech recognition, we utilize
self-supervised learning representation (SSLR) features from
pre-trained models. These SSLR features serve as input for both
SR and ASR modules, which are then fine-tuned at lower learn-
ing rates. This approach is referred to as SSLR-SA-ASR.

In order to further improve the performance of ASR for the
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Figure 3: Joint fine-tuning framework for speaker-adaptive im-
plicit target speaker enhancement (SAIS).

target speaker, we optimized the SSLR, SR, and ASR modules
involved in the joint fine-tuning (JFT) process. This method
is referred to as speaker-adaptive implicit target speaker en-
hancement (SAIS) and Figure 3 shows its framework struc-
ture. Specifically, we replace the SP layer in ECAPA-TDNN
with optimization transfer (OT) [32] to obtain more accurate
bias information for the target speaker. OT minimizes infor-
mation loss by constructing mapping and cost matrices for em-
beddings. Additionally, we introduce hierarchy speaker-gated
attention (HSGA) to effectively integrate target speaker infor-
mation at each encoder layer in the ASR module. These op-
timizations greatly enhance ASR’s ability to improve the per-
formance of the target speaker. To avoid redundancy, we also
attempted to change the decoder transformers’ cross-attention
module to memory cross-attention (MCA) module.

Moreover, we introduced speech enhancement model (SE)
as the front-end to improve the robustness, as suggested in [33].
For the SSLR extraction module, we explored the benefits of
two self-supervised pre-trained models which are WavLM[34]
and wav2vec[25]. The SR module based on ECAPA-TDNN ap-
ply 512 channels and get 192 dimensions x-vector. For the ASR
module, we adopted an attention-based encoder-decoder struc-
ture. The encoder uses a 12-layer conformer, while the decoder
comprises an embedding layer, a 6-layer transformer, and an
output layer. For the SE module, we utilized the Conv-TasNet
network which is pretrained on LibriSpeech and MUSAN. In
the joint fine-tuning (JFT) phase, we attempted only to update
the weights with larger gradients.

The systems were trained using both real and simulated
data, as discussed in Section 2.2. The total training data scale
was approximately 3700 hours. The training data mentioned
above exclusively consists of official CHiME-7 training data.
As per the rules, researchers are allowed to rearrange the train-
ing and development sets. In accordance with this, we trans-
ferred 80% of the utterances from the development set to the
training set and applied identical data augmentation methods.
This revised version of the training data amounts to 3900 hours,
and all ASR models were re-trained accordingly.



Table 2: Performance comparison of different methods on CHiME-7 DEV and EVAL set (collar = 0.25 s).

Method Set CHiME-6 DiPCo Mixer 6 Macro
DER JER DER JER DER JER DER JER

x-vectors + SC DEV 40.32 42.31 24.47 28.97 15.8 23.07 26.86 31.45
EVAL 36.32 43.39 25.18 35.08 9.53 12.08 23.67 30.18

+ NSD-MA-MSE DEV 32.27 34.76 21.04 24.01 9.28 12.94 20.86 23.90
EVAL 32.09 37.61 22.78 31.34 6.21 7.12 20.36 25.35

+ NSD-Seq2seq DEV 29.93 33.92 18.22 22.36 9.85 13.08 19.33 23.12
EVAL 30.50 36.01 21.64 29.83 5.50 6.30 19.21 24.04

Table 3: WER results of different training sets and model architectures on the CHiME-7 sub-track development set, using official GSS-
generated audio.

ID Model Architecture Training Data SSLR SE CHiME-6 DiPCo Mixer 6 Macro

E1 SSLR-ASR 470h WavLM - 31.66 34.46 17.86 27.99
E2 SA-SSLR-ASR 470h WavLM - 31.21 34.19 17.53 27.64
E3 SAIS 470h WavLM - 25.74 29.66 15.85 23.75
E4 SAIS 1400h WavLM - 25.56 29.19 15.37 23.37
E5 SAIS 3800h WavLM - 24.28 29.09 14.45 22.61
E6 SE+SAIS 3800h WavLM Frozen 24.75 27.77 13.43 21.98
E7 SE+SAIS 3800h WavLM+MCA Frozen 23.25 28.59 13.86 21.90
E8 SE+SAIS 3800h Wav2vec Frozen 22.73 26.93 13.20 20.95
E9 SE+SAIS 3800h WavLM JFT 22.27 26.94 12.84 20.68

3. Results & Discussion
3.1. Speaker Diarization

Table 4: Diarization and corresponding recognition results of
four stages of iterative optimization on the CHiME-7 develop-
ment set.

Stage CHiME-6 DiPCo Mixer 6 Macro
DER WER DER WER DER WER DER WER

1 29.93 33.56 18.22 35.11 9.85 12.83 19.33 27.17
2 27.36 32.78 16.73 32.01 9.41 12.41 17.83 25.73
3 26.53 30.62 15.83 30.96 9.17 12.6 17.18 24.73
4 25.81 28.61 15.00 28.63 8.96 11.93 16.59 23.06

Our diarization system is actually a multi-step iterative sys-
tem in the CHiME-7 DASR Challenge, but for a fair compari-
son, we present the results of different single model systems at
the first iteration in the Table 2. Compared to NSD-MA-MSE
, NSD-Seq2seq makes the macro DER drop relatively by 5.6%
on EVAL set.

Table 4 shows the results of our 4 stage iterative optimiza-
tion initialization, decoded through NSD-MA-MSE, using offi-
cial GSS and WavLM-SR-ASR acoustic models. It can be seen
that with the progress of multiple stages, both DER and WER
results have been gradually optimized. The average DER re-
sult of the fourth stage diarization is 16.59%, corresponding to
a WER result of 23.06%. Compared to the first stage, there is a
decrease of 13.47% in DER and a decrease of 15.11% in WER.

We analyzed the error types of diarization in each stage and
found that this is mainly because the introduction of spatial
information in the step-by-step optimization process reduces
speaker errors in the diarization results used to initialize NSD-
MA-MSE decoding, resulting in more accurate decoding re-
sults. The lower DER leading to lower WER is consistent with

experience.
We also tried the approach of using a deep separation model

to estimate masks and iterate in our Chime-6 challenge, but it
was not as effective as directly using binary masks generated
from diarization results. We believe this is because cacgmm and
beamforming algorithms themselves have performance bottle-
necks, and in cases where diarization and ASR systems are good
enough, better temporal boundary information will be more im-
portant.

3.2. Speaker Recognition

Table 3 shows the ablation results of our structure and training
data. From E1, E2, and E3, it can be seen that obtaining more
effective speaker information through targeted guided acoustic
models can significantly improve recognition performance in
multi-speaker scenarios. The average WER of E3 decreased by
15.19% compared to E1.

We set up three training datasets for ablation in ascending
order of scale, which are 470h, 1400h, and 3800h respectively.
Please refer to Table 5 for specific configurations.

Table 5: Statistics of ASR training sets.

Duration (h) Corpus Sample Scale

470 CHiME-6 (GSS, near), Mixer 6 (near) x3
1400 470 hours + LibriSpeech (simu) x1
3800 1400 hours + VoxCeleb 1&2 (simu) x1

E3, E4, and E5 demonstrated the gains brought by train-
ing data augmentation, decreasing from 23.75% to 22.61%, a
relative decrease of 4.77%. Finally, we added a voice enhance-
ment module and conducted parameter freezing and joint train-
ing with other modules. The best average WER achieved by
joint training of all modules is 20.68%.



In addition, it is noted that end-to-end speech recognition is
sensitive to the length of test sentences. For too short sentences,
it cannot grasp contextual information, while for too long sen-
tences, it not only leads to errors in the GSS process but also
generates some meaningless strings in ASR. Therefore, we fur-
ther limit the length of test sentences. Because long-duration
testing has been proven effective in many tasks, fragments from
the same speaker are connected in chronological order to form
sentence tests with a minimum fixed length of 10 seconds. Sen-
tences longer than 20 seconds will be directly segmented and
processed.

It is worth mentioning that, unlike many other teams in the
data augmentation process, we use additional single-channel
data to perform data augmentation through multi-channel and
multi-speaker simulation followed by GSS. This is because we
found that directly adding reverberation and vocal noise to aug-
ment single-channel data does not simulate the situation of mul-
tiple speakers speaking well. Often, it does not achieve the de-
sired effect and requires fine adjustment of the ratio between
simulated data and GSS data, sometimes even causing difficul-
ties in model convergence.

3.3. Overall Results

In Table 6 and 7, we show the results of our final system. When
decoding, long-time concatenation of short utterances is help-
ful to improve the WER metric. For different acoustic models,
we used their posteriors for fusion decoding. What’s more, the
decoded texts of the same utterance come from multi-type test
audios mentioned in Section 2.2, we used ROVER for the final
fusion.

In our final submission, sub-Sys1, main-Sys1, and main-
Sys2 use the ASR-V1. ASR-V1 did not use data from the de-
velopment set. Given that the rules allow us to re-arrange the
training set and development set, we move 80% utterances of
the development set into the official training set, and perform
the same data augmentation process as stated in Section 2.2. In
this way, we only retrain our end-to-end ASR models (ASR-
V2), and submit corresponding results as sub-Sys2 and main-
Sys3. After adding dev training data, it can be observed that
all subsets and macro WER have decreased. The missing DEV
results are due to the use of DEV data in ASR-V2 system.

In Table 7, main-Sys1 used the best diarization result on
dev in terms of WER (WER-P), and main-Sys2 used the best
diarization result on dev in terms of DER (DER-P). Note that
although main-Sys1 achieved better wer results than main-Sys2
on the dev set, it performed poorly on Mixer 6 subset in the
eval set, whereas main-Sys2 showed satisfactory results. This
to some extent indicates that a diarization system with better
DER results may have stronger generalization ability.

4. Reiview & Conclusion
Overall, CHiME-7 Distant Automatic Speech Recognition
(DASR) Challenge considered more realistic scenarios and ap-
plied more advanced technologies in the field of speech in re-
cent years compared to previous ones. System evaluation in-
cludes three different scenarios (CHiME-6, DiPCo, and Mixer
6), which have different array geometries and acoustic environ-
mental characteristics. Participants are required to develop a
unified system without using prior information, which is a huge
test for the robustness of the system. At the same time, CHiME-
7 allows the use of external data and unsupervised pre-training
of large models within the rules. This brings possibilities for

Table 6: The fusion results on CHiME-7 DASR sub-track.

System Scenario WER
DEV EVAL

Sys1

CHiME-6 19.62 20.30
DiPCo 24.12 20.41
Mixer 6 12.16 14.22
Macro 18.63 18.31

Sys2

CHiME-6 - 19.84
DiPCo - 19.54
Mixer 6 - 13.55
Macro - 17.64

Table 7: The fusion results on CHiME-7 DASR main-track.

System Scenario Dev Eval
DER WER DER WER

Sys1

CHiME-6 27.71 27.78 34.57 29.71
DiPCo 21.05 27.38 22.04 22.72
Mixer 6 11.84 12.03 23.04 16.21
Macro 20.20 22.40 26.55 22.88

Sys2

CHiME-6 25.81 28.61 25.11 27.86
DiPCo 15.00 28.63 16.36 24.04
Mixer 6 8.96 11.93 6.14 11.14
Macro 16.59 23.06 15.87 21.01

Sys3

CHiME-6 - - 34.57 29.36
DiPCo - - 22.04 21.63
Mixer 6 - - 23.04 15.03
Macro - - 26.55 22.01

applying some state-of-the-art diarization methods, speech sep-
aration, and enhancement methods.

Our team has developed a system for multi-channel pro-
cessing, data augmentation, speaker separation, and acoustic
modeling in the CHiME-7 DASR Challenge. We used a semi-
supervised approach to leverage the unlabeled data from Mixer
6 and VoxCeleb 1&2 and applied GSS to generate single-
channel augmented data for multi-channel multi-speaker con-
ference scene simulation data. A channel selection method
that adapts to various array geometries by utilizing signal to
interference plus noise ratio (SINR) was developed. We have
developed an iterative speaker diarization system that effec-
tively utilizes long-term spatial information. By jointly fine-
tuning self-supervised learning representation (SSLR), speech
enhancement (SE), speaker recognition (SR), and ASR mod-
ules, and making modifications some of the modules, our
speaker-adaptive implicit target speaker enhancement (SAIS)
method significantly improved ASR’s ability to enhance target
speaker performance. In CHiME-7 DASR, the fusion system
developed based on these methods achieved a WER of 21.01%
on the main track and won first place.
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