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Abstract
This paper describes the STCON system for the CHiME-7 chal-
lenge Task 1 (DASR) aimed at distant automatic speech tran-
scription and segmentation with multiple recording devices.
The system is generally similar to the Speech Technology Cen-
ter (STC) system for the CHiME-6 challenge but uses more so-
phisticated and advanced models for diarization and ASR. Care-
fully designed pipeline provides significant improvements com-
pared to the baseline system.
Index Terms: speech recognition, speaker diarization, WPE,
GSS, TS-VAD, WavLM, E-branchformer, Pruned Stateless
Transducer, CHiME-7.

1. Introduction
The CHiME-7 challenge continues the series of challenges
on multichannel speech processing in everyday environments
[1, 2, 3]. Compared to the previous challenge, several changes
were introduced. The Task1 (Distant ASR, DASR) subsumed
the whole CHiME-6 task, namely diarization and recognition
of highly overlapped multi-talker speech recorded on multiple
microphones, but training data was extended with partially an-
notated Mixer6 Speech corpus [4] and development/test data
was extended by both Mixer6 and Amazon Dinner Party Corpus
(DiPCo) [5] data. Additionally, it was allowed to utilize several
external datasets as well as pre-trained ASR/Speaker recogni-
tion models. In the Acoustic Robustness (AR) sub-track par-
ticipants were provided with oracle speaker-wise segmentation
of speech while in the Main track the segmentation should have
been obtained automatically via diarization process. Accord-
ingly, in AR sub-track the Speaker Attributed WER (SA-WER)
was used as a main metric, while in the Main Track the Diariza-
tion/Jaccard Error Rate (DER/JER) and more strict Diarization-
Aware WER (DA-WER) were used instead. Importantly, the
single system should have been used for all datasets and any
prior classification of dataset was prohibited. The Task2 de-
voted to the Unsupervised Domain Adaptation for conversa-
tional Speech Enhancement (UDASE) is out of scope of this
paper.

The speaker diarization task has a long history. The well
established approach consists of a Voice Activity Detection
(VAD) followed by the extraction of speaker embeddings from
a well-trained Speaker Recognition models on short speech seg-
ments, which are then clustered in order to assign cluster label
to each segment. While working excellent for non-overlapping
speech, this approach degrades significantly when two or more
people talk simultaneously. Several approaches were proposed
to tackle this problem. One direction uses End-to-End Neu-
ral Diarization (EEND) [6, 7, 8] models which predict activity

for all speakers talking in a given segment. While the same
speaker’s labels may differ in different segments, this permu-
tation ambiguity can be overcome with the processing of over-
lapping segments and subsequent “stitching” of speaker labels.
The another branch of approaches is based on Target Speaker
VAD (TS-VAD) [9, 10] models which predict speakers’ activ-
ity based on their embeddings. The initial embeddings can be
extracted from clustering-based diarization segments and then
gradually improved using iterative refinement. There are also
approaches based on preliminary speech sources separation or
target speaker’s speech extraction (TSE) [11, 12].

ASR also degrades severely on overlapping speech seg-
ments. Diarization itself does not help to improve ASR qual-
ity but can be utilized in order to extract speech of each sepa-
rate speaker especially in multi-microphone scenarios. Some of
the most viable approaches for this are the already mentioned
TSE and a beamforming. Many beamforming algorithms (like
MVDR [13], GEV [14], etc.) needs to know spatial covari-
ance matrices in each frequency bin whose estimation relies on
speaker masks. Guided Source Separation (GSS) [15] performs
a speaker masks estimation based on the information about ut-
terance boundaries, so it can benefit much from an accurate
speaker diarization. TSE in turn needs good speaker embed-
dings which can be estimated from diarization information or
obtained as a by-product of TS-VAD refinement procedure.

ASR systems have shown a great progress last years. Rapid
development of end-to-end approaches as well as new advanced
architectures like Conformers [18] provided significant im-
provements on many known benchmarks. Another promising
direction is Self-Supervised Learning [19, 20, 21] that provides
models which are trained on a huge amount of unsupervised
data and may be fine-tuned to different downstream tasks in-
cluding ASR. Even very limited amount of supervised data is
usually enough to obtain reasonable ASR performance which
is of great importance for low-resource scenarios. Some ap-
proaches [16, 17] try to solve multiple tasks simultaneously to
benefit from E2E approach on ASR, dereverberation and beam-
forming with self-supervised learning.

This paper describes the STCON system for the CHiME-7
DASR task which is similar to the STC system for the CHiME-
6 challenge and consists of the following modules. Speech
pre-processing includes block-wise WPE [22] dereverberation.
The diarization module includes basic clustering-based diariza-
tion followed by TS-VAD refinement and some kind of post-
processing. The speech enhancement module consists of GSS,
MVDR beamforming and audio normalization (to avoid clip-
ping). ASR module includes several models, both end-to-end
and hybrid, whose decoding results are re-scored with several
external LMs and fused together.



The main contributions of this paper include: 1) basic di-
arization pipeline with estimation of actual number of speak-
ers and DOVER-Lap based fusion of channel-wise diarization
results, 2) adjusting TS-VAD model training for heterogeneous
data, 3) careful tuning of diarization post-processing and speech
separation pipelines, and 4) fine-tuning of SSL model for the
challenge data and using its embeddings to train complemen-
tary models.

The rest of the paper is organized as follows. In Section 2,
we describe the speech pre-processing and separation pipeline
as well as the ASR system trained for the AR sub-track. Then
in Section 3 the diarization pipeline and TS-VAD training is
described in details. Section 4 presents the overall results and
conclusions.

2. DASR: Acoustic Robustness subtask
The baseline recipe uses a Transformer-based model with pre-
trained and freezed WavLM [21] feature extractor (frontend),
trained using ESPNet [23] with CTC+attention loss on the
highly augmented dataset. It includes full CHiME-6 and
Mixer6 training sets (Multiple Distant Microphones, MDM)
plus synthetic (reverberated and noisy) data from close-talking
microphones as well as GSS-enhanced data.

2.1. Data pre-processing

Baseline system includes components for speech dereverbera-
tion using Weighted Prediction Error (WPE) [22] and speech
separation using Guided Source Separation (GSS) [15, 24] per-
formed on selected 80% of all channels with maximum values
of MicRank criterion based on Envelope Variance [25]. We
tuned both components to improve separated speech quality.
For dereverberation we used all-channel block WPE applied
with 2-minute long blocks. The blockwise variant is much
faster than one applied to the entire signal and provides com-
parable quality.

In GPU-GSS toolkit (unlike the original implementation)
the speech of target speaker found in utterance contexts is con-
sidered as target speech. This provides better results when using
wide contexts. We found that expanding both contexts up to 45
seconds improves WER notably (-2.1% on CHiME-6 dev).

The baseline version of GSS utilizes information about
speakers’ activity for both masked updates of complex Angular-
Central GMM (cACGMM) during EM iterations, and hard ini-
tialization of its weights. Following [9] we used the soft initial-
ization of cACGMM weigths from TS-VAD predictions (Sub-
section 3.3). The possibility to initialize cACGMM differ-
ently than from activity mask can be also beneficial in case
when oracle speaker boundaries are provided. Indeed, after ap-
plying baseline GSS and recognizing its outputs one can use
ASR alignment to initialize cACGMM. This two-pass approach
brings substantial WER improvements (-0.9% on CHiME-6
dev) due to skipping intra-word pauses during initialization (un-
like the hard initialization which assigns equal non-zero values
to all frames of speaker’s utterance). We used this approach in
all AR subtrack experiments unless otherwise stated. Besides
we found that with such initialization a number of GSS training
iterations can be reduced to 5.

In order to account for the speakers movements around the
room during the long utterance, beamforming was performed
on chunks of 4.8 seconds. Finally, we applied the signal level
normalization to avoid high clipping rate in GSS results. The
progress from each change is presented in Table 1.

Table 1: WERs(%) for DEV sets from GSS tuning.

mod chime dipco mixer6
baseline 34.1 34.0 23.3
+ context 45s 32.0 32.0 23.3
+ Alignment initialization 31.1 31.5 23.3
+ 4.8s beamforming chunk 31.0 31.5 23.3
+ 5 iter of cACGMM training 29.9 31.5 23.3
+ Audio normalization 29.8 31.1 23.0

2.2. Train dataset selection

Multiple experiments on large baseline training dataset are both
very time-consuming and computational resources demand-
ing. After first training attempts we decided to reduce training
dataset and found that limiting it with WPE+GSS data only does
not harm recognition accuracy on CHiME devset. So the most
of subsequent trainings used this reduced dataset with 3-fold SP
which speeded up experiments significantly.

2.3. Acoustic model improvement

Prior to experimenting with different architectures we tuned
some training hyper-parameters, namely way of batching and
learning rate schedule, that provided significant WER reduction
on the baseline Transformer architecture (this corresponds to
the line “Transformer (ours)” in Table 3.

In addition to the Transformer architecture used in the base-
line recipe, we also trained ESPNet end-to-end models based on
UConv-Conformer [26], E-Branchformer [27].

Although freezed WavLM embeddings themselves provide
impressive results, one can benefit from unfreezing its weights
and fine-tune them on domain specific data. We did this and
observed notable improvements in WER on all devsets.

We also tried to replace WavLM with several other pre-
trained open-source models permitted by the challenge rules,
namely Wav2Vec2.0 [19] and HuBERT [20]. The comparison
of different SSL frontends in terms of devset WER is shown
in Table 2. Since WavLM provided the best results in terms
of WER, it was chosen as a main embedding extractor to use.
We also found that switching off SpecAugment [28] improves
recognition accuracy.

Table 2: WERs(%) for DEV sets on different SSL frontends. All
models were fine-tuned as a whole, without parameters freezing

SSL chime dipco mixer6
WavLM 27.4 30.1 20.3
HuBERT 34.4 37.9 24.3
W2v2 XLSR53 36.0 40.9 24.6
W2v2 large LV60K 31.5 34.7 20.5

After fine-tuning WavLM parameters on training dataset
within UConv-Conformer framework, this extractor was used to
obtain highly informative domain-specific embeddings, which
were used as features to train other types of acoustic mod-
els. First, we trained several phoneme-based Kaldi [29] multi-
stream (MS) TDNN-F hybrids [30] and found that these model
are comparable in accuracy to ESPNet end-to-end models. We
also trained several version of Pruned Stateless Transducer
(with additional CTC head) based on ZipFormer encoder using
k2-IceFall implementation [31]. k2 models are also compara-
ble to ESPNet ones with slight improvements on Mixer6 devset.
WERs on several backend architectures are shown in Table 3.



Table 3: Devsets WER(%) for different backends with and with-
out WavLM Fine-tuning (FT)

Model FT chime dipco mixer6
Transformer (baseline) ✗ 32.6 33.5 20.3
Transformer (ours) ✗ 26.0 28.0 16.9

✓ 22.4 26.3 14.9
UConv Conformer ✓ 22.2 26.1 14.5
E-branchformer ✓ 22.2 26.7 14.3
Hybrid MS TDNN-F ✓ 22.2 24.8 13.6
k2 Zipformer ✓ 21.8 25.6 13.3

In addition to ESPNet joint CTC-attention decoding for
E2E models, we used Kaldi decoding with TLG graph [32]. 3-
gram language model was built with SRILM [33] and VariKN
[34] toolkits using CHiME, Mixer6, LibriSpeech and WSJ
training texts. Transformer-LM [35] and AWD-LSTM-LM [36]
trained using the same texts were utilized for rescoring ASR re-
sults.

In order to adapt ASR models to the domain peculiarities
we added devsets data (several copies after processing with dif-
ferent GSS versions) to the ASR training. We tried both recog-
nized and reference transcriptions of devsets for training. Rec-
ognized transcriptions worked significantly worse, so we opt to
use reference ones. GSS processed devsets of CHiME-6 and
DiPCo with three different GSS setting were used in training
ASR models. We still used transcripts recognized with the best
ASR model to add 106 hours of untranscribed Mixer6 data and
used them for training one of our final models. In this experi-
ment we randomly split the entire set of segments into 10 equal
subsets and took subsets data from 10 different Mixer6 chan-
nels. The more detailed information about training subsets du-
ration can be found in Table 4.

Table 4: Sizes of data sets (in hours) used for training ASR mod-
els. Subsets used for not all models are marked with asterisk

data chime dipco mixer6 overall
train sup GSS + SP 85 - 165 250
train unsup MDM* - - 106 106
dev GSS x3* 18 10 - 28
total 103 10 271 384

We used the well-known Kaldi implementation of lattice-
fusion as the combination method for various acoustic models
results. The combination selection procedure is performed iter-
atively on dev sets. It starts from the combination of all avail-
able recognition results, and with each iteration discards recog-
nition result from combination if this improves WER.

3. DASR: Main track
3.1. Selecting the diarization pipeline

Prior to the publication of the official main track baseline recipe
we had compared several open-source frameworks and pre-
trained models for the speaker diarization task (e.g. NeMo Ti-
taNet [37] combined with Pyannote [38]) but results on CHiME
devset were not satisfactory, so we resorted to use TS-VAD [9]
approach which was quite successful in the previous CHiME
challenge. Official recipe publication revealed superiority of
the baseline diarization over the TS-VAD approach on DiPCo
and Mixer6 but we decided to continue elaborating pre-selected
TS-VAD direction.

3.2. Basic diarization

Basic diarization provides an initial segmentation for TS-VAD
i-vectors extraction. We used the clustering-based approach
for this. Clustering was performed on speaker embeddings ex-
tracted from single-channel recordings from each session dere-
verberated using all-channels WPE. After the diarization of
each channel recordings the results were joined via DOVER-
Lap [39]. In the joining procedure all channels were used ex-
cept those that were not selected by MicRank on any of ses-
sion segments. We compared several speaker embedding ex-
tractors, namely ResNet34 [40] and wav2vec2.0-based ones,
developed in STC and trained on VoxCeleb1,2 data, as well as
several open-source models, such as NeMo TitaNet/SpeakerNet
and SpeechBrain [41] Ecapa TDNN [42]. The diarization re-
sults on CHiME devset for different extractions and cluster-
ing approaches are presented in Table 5. The best results on
CHiME devset were obrained using the SpeechBrain model and
ResNet34-based STC model. So, their fusion (via embeddings
concatenation) followed by Spectral Clustering (SC) [43] was
used in our pipeline.

Table 5: CHiME Devset DER/JER for different speaker embed-
dings extractors and clustering algorithms. The number of clus-
ters is set to 4 in all experiments

Extractor Clustering DER JER
TDNNF (xvectors) SC 59.01 63.35

STC Resnet34
SC 47.11 49.18

KMeans 54.21 54.88
GMM 54.34 55.32

STC Wav2Vec-based SC 53.78 57.28
KMeans 57.57 60.36

SpeechBrain Ecapa TDNN SC 46.32 48.28
KMeans 49.54 51.44

Nemo TitaNet SC 50.16 55.00
Nemo Ecapa TDNN SC 54.76 59.50

In the original TS-VAD the number of speakers were fixed
to be four. Since then several modification were proposed which
relax this constraint to allow any number of speaker not much
then used in training [44] or even arbitrary [10]. Since we
could rely on information that no session contains more then
4 speakers, we chose the approach from [44]. But inferring
an actual number of speakers is still a problem. There are
some approaches to estimate it in course of clustering itself
like NME-based approach from Spectral Clustering (SC) [43],
dendrogram-based approach from Agglomereative Hierarchical
Clustering (AHC) [45] or Silhouette index [46] but in our ex-
periments all them made too many errors. As a result we used
the following 2-stage procedure. First we extracted short-term
embeddings on 1.5 seconds intervals with 50% overlap and put
them into 4 clusters using Spectral Clustering. Then for each
cluster we joined all segments related to it and extracted long-
term embeddings on 10 seconds interval without overlap. Then
we estimated number of speakers by analysing cosine distances
between long-term embedding cluster centroids. After inferring
the number of speakers we re-clustered short-term embeddings
to obtain the final results of basic diarization.

3.3. Training TS-VAD models

We mainly followed training approach and architecture de-
scribed in [9]. The main difficulty of training TS-VAD mod-



Figure 1: The proposed diarization pipeline

els for the CHiME-7 was in proper train dataset selection. Un-
like the CHiME data which are well-labeled, the Mixer6 data
are poorly and only partially labelled so cannot be used for
training directly. Also there is no any training data for DiPCo.
Thus no in-domain training data is available for two challenge
datasets of three. Training only on CHiME data causes severe
over-fitting and poor TS-VAD performance on both DiPCo and
Mixer6 devsets. Adding VoxCeleb data acts as a regularization
but doesn’t help much. We tried to estimate DiPCo RIRs based
on devset data and generate DiPCo-like recordings using Lib-
riSpeech audios and estimated RIRs but observed no improve-
ments on DiPCo dev/eval sets. That’s why we decided to use
DiPCo devset in training directly: we trained 5 different TS-
VAD models each of which uses 4 of 5 DiPCo devset sessions
in training and combined their predictions1. This led to sub-
stantial improvement of DER/JER on DiPCo evalset. In order
to incorporate Mixer6 data in training too, we performed basic
diarization (Subsection 3.2) of Mixer6 trainset into exactly 2
speakers. This gave us a better speaker labelling of Mixer6 data
and facilitated including them in TS-VAD training.

TS-VAD inference was performed for each channel sepa-
rately and then predictions were fused via averaging over se-
lected channels. Channel selection was performed based on Mi-
cRank and exactly 10 channels were selected for all datasets.

3.4. Post-processing

We found that a simple post-processing of the diarization re-
sults can improve WER significantly. We used several post-
processing strategies. Firstly, we expanded each segments to
the left and right (the best value was 0.5s for TS-VAD and 1s
for basic diarization). Second, we combined two speech seg-

1Values of DER/JER reported on DiPCo devset are valid since they
were obtained for each session with the model trained without this ses-
sion

ments separated by a pause shorter than 0.2s. We also selected
the threshold for TS-VAD (the best value was 0.3). Table 6
shows the post-processing results for basic diarization and TS-
VAD.

We also observed WER improvements from using TS-VAD
weights for GSS initialization for segments from basic diariza-
tion (see Table 6, result with *) and even for oracle segments in
AR subtrack.

Table 6: Tuning post-processing for CHiME devset. “l” and
“r” stand for expansion sizes in seconds, “sep” stands for max-
imum pause length to combine neigbouring speech segments,
“thr” is a TS-VAD threshold. The result obtained when TS-
VAD predictions were used to initialize GSS weights is marked
with asterisk

Diariz. l/r sep thr WER DER JER

Basic

41.3 40.2 41.4
0.5/0.5 39.5 39.1 38.3
0.5/0.5 2 37.6 35.6 36.6

0.25/0.75 0.2 36.6 35.0 35.9
0.25/0.75 2 36.3 34.0 34.8

1/1 0.2 35.2 36.6 35.7
1/1 0.2 34.0* 36.6 35.7

TS-VAD

1/1 0.2 0.3 32.5 38.8 34.8
1/1 0.2 0.4 33.8 34.4 34.2

0.5/0.5 0.2 0.3 32.2 29.3 30.2
0.5/0.5 0.2 0.4 33.6 27.9 31.0

3.5. Entire system pipeline

The entire system pipeline starts from basic diarization fol-
lowed by TS-VAD, segments from which are post-processed
and passed into several version on GSS+beamforming. Ob-
tained speaker segments are recognized by several acoustic
models and decoding results are rescored and fused together.
The scheme of the diarization pipeline is shown on Figure 1.

4. Results and conclusions
Diarization and ASR results for the main track are shown in
tables 7, 8 and 9 respectively.

Table 7: DER/JER results for main track. BL/BD stand for
baseline and basic diarization respectively

BL BD TS-VAD

chime dev 39.9/51.1 40.6/41.4 33.5/35.7
eval 56.3/62.5 39.6/44.5 36.6/41.3

dipco dev 29.8/41.4 25.9/28.4 26.3/27.7
eval 27.9/40.9 26.6/36.8 22.7/33.2

mixer6 dev 16.5/22.8 16.7/23.3 15.6/23.0
eval 9.3/11.0 17.5/16.2 16.3/13.9

The obtained results demonstrate that the careful tuning of
the well-known pipeline and using advanced architectures for
ASR models can provide significant improvements compared
to rather strong baseline. Nevertheless, there is a large room
for improvements in both diarization and ASR. There are many
new and promising ideas which can bring much improvement
and this is a great field for the future work.



Table 8: WER results on devsets for the best single system (BSS)
and fusion for AR subtrack and main track

chime dipco mixer macro-avg
AR subtrack

Baseline 32.5 33.5 20.3 28.8
BSS 21.7 23.4 13.0 19.4
Fusion 19.5 23.1 12.6 18.4

Main track
Baseline 62.4 56.6 22.5 47.1
BSS 32.1 36.3 17.3 28.6
Fusion 31.4 33.7 15.8 26.9

Table 9: WER results on evalsets for BSS and fusion for AR
subtrack and main track

chime dipco mixer macro-avg
AR subtrack

Baseline 35.5 36.3 30.9 34.2
BSS 27.6 22.6 17.9 22.7
Fusion 23.0 19.3 12.8 18.3

Main track
Baseline 77.4 54.7 33.7 55.3
BSS 39.5 31.9 29.2 33.5
Fusion 34.4 28.3 25.4 29.4
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