
The CHiME-7 Challenge: System Description and Performance of
NeMo Team’s DASR System

Tae Jin Park, He Huang, Ante Jukić, Kunal Dhawan, Krishna C. Puvvada, Nithin Koluguri, Nikolay
Karpov, Aleksandr Laptev, Jagadeesh Balam and Boris Ginsburg

NVIDIA, Santa Clara, USA
{taejinp,heh,ajukic,kdhawan,kpuvvada,nkoluguri,nkarpov,alaptev,jbalam,bginsburg}@nvidia.com

Abstract
We present the NVIDIA NeMo team’s multi-channel speech
recognition system for the 7th CHiME Challenge Distant Au-
tomatic Speech Recognition (DASR) Task, focusing on the de-
velopment of a multi-channel, multi-speaker speech recogni-
tion system tailored to transcribe speech from distributed mi-
crophones and microphone arrays. The system predominantly
comprises of the following integral modules: the Speaker Di-
arization Module, Multi-channel Audio Front-End Processing
Module, and the ASR Module. These components collectively
establish a cascading system, meticulously processing multi-
channel and multi-speaker audio input. Moreover, this paper
highlights the comprehensive optimization process that signif-
icantly enhanced our system’s performance. Our team’s sub-
mission is largely based on NeMo toolkits and will be publicly
available.

1. Introduction
The landscape of conversational artificial intelligence (AI)

has seen significant advancements in recent years, with an in-
creased emphasis on applications such as automatic speech
recognition (ASR), text-to-speech synthesis (TTS), and exten-
sive use of large language models (LLMs). Among the numer-
ous open-source toolkits in this domain, NVIDIA’s NeMo is
emerging as a pivotal toolkit for conversational AI, particularly
ASR models. A hallmark of the NeMo toolkit is its ability to
leverage prior work, in terms of both code and pretrained mod-
els, thereby enhancing the development and evaluation process
more efficient and reproducible. Our submission for CHiME-
7 DASR task is largely based on the NeMo models and code
bases which are originally built for single-channel tasks. Most
importantly, we publicly release our submission based on NeMo
toolkit so that anyone could test and improve the proposed sys-
tem.

In the context of practical applications, this paper explores
NVIDIA NeMo team in the 7th CHiME Challenge. Specifi-
cally, we shed light on the intricacies of their multi-channel
speech recognition system, designed to transcribespeech picked
up from multiple, distributed microphones and arrays. While
our focus is honed in on Track 1, encompassing distant auto-
matic speech recognition (DASR), the details of this system are
revealed through its principal components, such as the speaker
diarization module, the multi-channel (MC) Audio front-end
processing module, and the ASR Module. Collectively, these
modules create a cascade that adeptly handles multi-channel,
multi-speaker audio input. We will also highlight the opti-
mization methods employed to boost the system’s efficiency, as
showcased on the development set.

This paper is constructed in the following structure. In Sec-
tion 2 we explain the details of each signal processing chain and

Figure 1: Dataflow of the NeMo Team’s CHiME-7 Submission.

Figure 2: Channel clustering: Γ̄ computed on a single session
from CHiME-6 (left), DiPCo (middle), and Mixer 6 (right) de-
velopment subsets.

neural models that comprise our DASR system. In Section 3 we
discuss the hyper-parameter optimization method used to adjust
the non-differentiable parameters affecting the overall perfor-
mance. In Section 4, we present the evaluation results on the
dev and eval set of the challenge dataset. Finally, we conclude
and discuss the future work in Section 5.

2. Proposed DASR system
The Fig. 6 illustrates the data flow of our submission for the

DASR task. In the highest level, our system consists of the fol-
lowing modules: dereverberation with channel clustering, front-
end for diarization, speaker diarization module, front-end for
ASR, ASR decoder module.

2.1. Dereverberation with channel-clustering
This module aims to perform dereverberation and channel

clustering on the raw multi-channel audio input. The goal of the
dereverberation module is to reduce the impact of room rever-
beration on diarization performance, similar to previous sub-
missions [1]. The objective of the channel clustering module
is to decrease the number of audio streams utilized for multi-
channel diarization. The multi-channel audio signals are pro-
cessed using the weighted prediction error-based dereverbera-
tion for multiple-input multiple-output (MIMO) as presented
in [2] and implemented in NeMo toolkit [3]. Block-wise MIMO
dereverberation is conducted over 40-second windows with a
two-second window overlap. This process utilizes STFT with
64 ms window length, 75% overlap, 10 frame filters, a 3-frame
prediction delay and 10 iterations. Using the processed multi-

Figure 3: Multi-channel VAD is applied on clustered channels
while low-logit channels are dropped. Finally, frame-wise max
pooling is applied across the remaining clustered channels.

Figure 4: Speech signal and its corresponding multi-scale seg-
ments for speaker embeddings. The frame-VAD logits will mask
the only frames detected as speech.

channel signal, we compute a magnitude-squared coherence
(MSC) matrix, Γ(f) ∈ RM×M , where M represents the num-
ber of channels. This approach is consistent with the methodol-
ogy in [4], and the elements in Γ(f) are:

{Γ(f)}ij =
|Sij(f)|2

Sii(f)Sjj(f)
, (1)

where Sij(f) is the cross-power spectral density between chan-
nels i and j. The average MSC matrix Γ̄ is obtained by averag-
ing over frequency subbands f between 300 Hz and 3.5 kHz.
Fig. 2 depicts examples of Γ̄ for a single session from each
of the subsets of the development set. It can be observed that
the patterns in Γ̄ correspond to different microphone array con-
figurations used for recording the data for each of the subsets.
Clustering of the channels is obtained by applying maximum
eigengap spectral clustering (NME-SC) [5] on Γ̄. Note that the
number of clusters is estimated automatically using normalized
maximum eigengap [5], and channel clustering is performed for
each session independently. The obtained channel clusters are
used to reduce the number of audio streams for multi-channel
diarization. Signals within each cluster are averaged, and these
output streams are used as the input for the following steps of
multi-channel speaker diarization.
2.2. Speaker diarization
2.2.1. Multi-channel Voice Activity Detection

We employ a convolution-based voice activity detection
(VAD) model to predict speech probability for each 20 ms block
of the input audio signal [6]. The model is randomly initial-
ized and trained on a combination of the CHiME-6 [7] train-
ing subset and an additional simulated dataset. For validation,
we use dataset comprises the CHiME-6 development subset as
well as 50 h of simulated audio data. The simulated data is
generated using the NeMo multi-speaker data simulator [8] on
VoxCeleb1&2 datasets [9, 10].This results in a total of 2,000
hours of audio, of which approximately 30% is silence. Addi-
tionally, the model training incorporates SpecAugment [11] and
noise augmentation through MUSAN [12]. During inference,

Figure 5: Multi-channel speaker embedding vectors are con-
catenated to form an multi-channel super-vector that incorpo-
rates speaker traits from all channels.

Figure 6: Data-flow of speaker diarization system.

the input to the VAD model first undergoes processing by the
front-end system, as detailed in Section 2.2. For multi-channel
VAD inference, we employ the VAD model trained on a single-
channel signal. We exclude channels that have relatively low
average VAD probabilities, ranging from 0% to 50%. Subse-
quently, a maximum operation is applied to the VAD probabili-
ties for each frame, generating the final VAD probability values
for the multi-channel audio input.
2.2.2. Multi-channel Diarization Module

Our DASR system is based on the speaker diarization sys-
tem using the multi-scale diarization decoder (MSDD) pro-
posed in [13]. This system employs a multi-scale embedding
approach and utilizes TitaNet [14] speaker embedding extractor.
Unlike the system in [13] that uses a multi-layer long short-term
memory (LSTM) architecture, we employ a four-layer Trans-
former architecture with a hidden size of 384. This neural
model generates logit values indicating speaker existence. Our
diarization model is trained on approximately 3,000 hours of
simulated audio mixture data. This data is sourced from the
same multi-speaker data simulator used in VAD model training,
drawing from the VoxCeleb1&2 [9, 10] and LibriSpeech [15]
datasets. Additionally, MUSAN [12] noise is also used for
adding additive background noise, primarily focusing on mu-
sic and broadband noise.

During inference, we employ NME-SC [5] for initial clus-
tering. To leverage the multi-channel input, we concatenate the
embedding vectors from each channel to create an elongated
embedding vector. Specifically, given M clustered channels,
the channel displaying the lowest correlation in the speaker em-
bedding vector is excluded, resulting in (M − 1) concatenated
embedding vectors. The global speaker clustering result is ap-
plied to each channel to produce separate channel-wise diariza-
tion outcomes. For multi-scale embedding extraction, we use
scale lengths of 3 s, 1.5 s, and 0.5 s with a half-overlap, appli-

Figure 7: Multi-channel ASR front-end.
cable for both clustering and MSDD inference. For clustering,
we adjust the multi-scale weight using the following equation
for the k-th scale:

w(k) = r − r − 1

K − 1
k, (2)

where k is an integer scale index, K denotes the number of
scales (K=3) and r corresponds to the r value. This r value
is parameterized to define the scale weights using a single
floating-point number. We optimize the multi-scale weights on
the development set by tuning the r value. If r > 1, more
weight is placed on the longer scale, whereas if r < 1 the longer
scales are given less weight.

We employ a scale interpolation technique on the smallest
scale, achieving a finer speaker-decision resolution of 0.05 sec-
onds. As illustrated in Fig. 4, we select the two segments closest
to the center of the interpolated segments and then compute the
distance to the center of the neighboring segments. The weights
for interpolating the scale to obtain the interpolated embedding
vector, e, are determined as follows:

dL = d(tC , tL) = |tC − tL| (3)
dR = d(tC , tR) = |tC − tR| (4)

e =
dL√

d2L + d2R
eL +

dR√
d2L + d2R

eR, (5)

where tL and tR represent the timestamps of the centers of
the two closest segments, while eL and eR are the two closest
speaker embedding vectors on the left and right, respectively.
The process of computing interpolated embeddings is executed
through a series of matrix-based algebraic multiplications that
support batch processing. The MSDD inference window has a
local window length Tl of 15 s with a hop length of 3 s. At each
inference window, a set of average of speaker embedding vec-
tors is calculated by mixing both the local context (a few tens of
seconds, represented by Tl) and global context (a few minutes,
represented by Tg). We parameterize the average speaker em-
bedding by using the global average mix ratio, α and the
global average window length, Tg . The average speaker
embedding vector of each speaker ES , is given by:

ES = αElocal,Tl + (1− α)Eglobal,Tg , (6)

where Elocal and Eglobal represent the local and global
speaker-profile embedding vectors, respectively. Both vec-
tors have dimension of (number of scales,embedding
dimension,number of speakers). The remainder of the
training routine is consistent with the system proposed in [13].
2.2.3. Post-processing of diarization segments

The final output of the diarization system depicted in 6 is
T ×NS matrix PS filled with sigmoid values. Here, NS repre-
sents the maximum number of speakers. In our submitted sys-
tem, we set NS=1. The sigmoid values in PS are then thresh-
olded using the sigmoid threshold, denoted as τ :

PS [s, i] > τ, (7)

Figure 8: Multi-stream ASR front-end: multiple audio outputs
are generated for each input utterance.

Figure 9: Diarization post-processing using minimum duration,
maximum duration, onset padding and offset padding.

where s and i are indices for the speaker and the finest-scale
segments, respectively. The final diarization segments are de-
rived from the timestamps generated by this thresholding pro-
cess. Finally, we use majority voting on the channel-specific
sigmoid values to generate a single set of diarization segments
for each speaker.

As previously demonstrated in [1], the post-processing
of diarization segments can significantly influence the perfor-
mance of both front-end processing and ASR. Thus, we param-
eterized the post-processing of these diarization segments, as il-
lustrated in Fig. 9. If the segment boundaries are set too tightly,
there is a risk of cutting off words; conversely, if they are set
too loosely, they may inadvertently include words spoken by
the wrong speaker. As depicted, pad onset and pad offset
represent the lengths of buffers appended at the start and end
of each segment, respectively. Meanwhile, min duration off
and min duration on are threshold values used for removing
short segments and brief silences, respectively.
2.3. Multi-channel ASR front-end

A multi-channel front-end depicted in Fig. 7 based on
guided source separation (GSS) is used to extract the target
speech signal for a single utterance, as in the baseline sys-
tem [16]. The multi-channel front-end consists of envelope
variance-based channel selection [17, 1], MIMO dereverber-
ation [2] and mask-based MIMO MVDR beamforming [18]
for extraction of the target speech signal. Target mask is es-
timated using GSS with an additional context to prevent permu-
tation [19]. The reference output channel is automatically se-
lected based on maximization of the estimated SNR [19] and the
target mask with a minimum gain threshold is used to mask the
output reference channel. The front-end is implemented in [3]
and optimized to reduce computation time to reduce the time
required for parameter optimization of the complete system as
described in Section 3.

The main processed audio stream is generated using pa-
rameter optimized on the complete CHiME-7 development set
and used for Systems 2 and 3 in Tables 1 and 4. In the multi-
stream configuration depicted in Fig. 8, we generate three aux-
iliary processed audio streams using parameters optimized on
each of the three subsets in the development set. In this con-
figuration, each utterance is processed using all four front-end
setups in parallel and the optimal processed audio stream for
the current utterance is selected using an ASR-based confidence

Table 1: System types and descriptions for main track.

System Description

System-1 MC Diarization (cascaded optimization) + Multi-
stream Front-End Ensemble + ASR + LM

System-2 MC Diarization + Front-End + ASR + LM (end-to-end
optimization)

System-3 MC Diarization (cascaded optimization) + Front-End
+ ASR-LM parameter optimization

measure. For our System-1 in Table 1, we ensemble the four
processed streams with the first preference to main processed
audio stream. An auxiliary stream is used if the corresponding
ASR segment confidence is greater than the confidence of the
main stream by a threshold, which is tuned to achieve the best
performance on the development set. The ASR confidence is
calculated using the method proposed in [20] with exponentially
normalized Tsallis entropy with a temperature of 0.25 and mean
aggregation over output tokens.
2.4. Automatic speech recognition

Single-channel audio generated using multi-channel front-
end (described in Section 2.3) is transcribed using a 0.6B
parameter Conformer-based transducer model [21]. The
model was initialized using a publicly available NeMo check-
point [22]. It was then fine-tuned on the CHiME-7 train set
(which includes the CHiME-6 and Mixer6 training subsets) af-
ter processing the data through the multi-channel ASR front-
end, utilizing ground-truth diarization. This fine-tuning phase
lasted for 35,000 updates with a batch size set to 128.

Note that we use the ASR model trained only on CHiME-7
train set for System-A in Table 2 and all three systems in Ta-
ble 4. Additionally, we also included dev subset data to fine-
tune the model used for submission for System-B and System-
C in Table 2. All systems use an external language model as
described in Section 2.5.
2.5. N-gram language model

The performance of our end-to-end automatic speech
recognition model is improved using beam-search algorithm
with a language model (LM). We apply a word-piece level N-
gram language model with byte-pair-encoding (BPE) tokens us-
ing SentencePiece [23, 24] and KenLM [25, 26] toolkits from
transcription of CHiME-7 train and dev sets. Token sets of our
ASR and LM model were matched. To combine several N-gram
models with equal weights we used OpenGrm library [27, 28].
MAES decoding [29] was used for transducer. As expected,
the end-to-end model with beam-search decoder and language
model performs better than the pure one.
2.6. Text Normalization

We implement basic text normalization rules that correct
consistent errors or undesired tokens found in the transcript.
We remove all double spaces, unknown symbol \u2047 from
ASR model and replace aw with oh. These string mappings are
validated using the development set. In addition, we employ
CHiME-7 scoring for text normalization to produce the final
transcription output intended for submission.

3. Hyper-parameter Optimization
For hyper-parameter optimization, we utilize the Optuna

framework [30]. This framework facilitates the optimization of
parameters for black-box systems based on a target metric that
assesses system performance. We employ the default optimiza-
tion algorithm, the tree-structured Parzen estimator [31], aiming
to optimize the macro DA-WER on the development set. As il-
lustrated in Fig. 10, our DASR pipeline is treated as a black box,

Figure 10: Optuna optimization loop and scatter plot of trials
and DA-WER.

Figure 11: Parallel Coordinate plot of the major hyper-
parameters. The systems showed DA-WER in the range of
[33.2, 34.5]% are highlighted.

given that the optimization does not leverage any prior under-
standing of the mechanism behind DA-WER computation. We
employ two distinct strategies for system optimization: (1) cas-
caded and (2) end-to-end optimization. All optimization tasks
run using NVIDIA V100 GPUs, and we run five instances of
inference sessions on an 8-GPU machine. The entire process
takes roughly 9 hours to produce transcriptions for the complete
CHiME-7 dev set. Overall, we conduct approximately 2000 tri-
als to identify the best-performing configurations.
3.1. Cascaded Optimization

The cascaded optimization comprises two stages. In the
first stage, we optimize the diarization front-end, VAD, diariza-
tion module, multi-channel ASR front-end, and the ASR mod-
ule with greedy decoding. In the second stage, we use the front-
end outputs as input to an advanced ASR module equipped with
a language model and beam-search decoding. At this stage, we
focus on optimizing LM scoring and decoding strategies.
3.2. End-to-End optimization

The end-to-end optimization tunes the hyper-parameters of
all modules simultaneously, encompassing LM rescoring and
beam search decoding for ASR. To reduce the search space, we
fix certain less important hyper-parameters to the best values
identified in the previous cascaded optimization phase and op-
timize those with greater importance and more varied values
across the top-performing trials.
3.3. Parameter importance

The hyper-parameters listed below are the top seven that
exhibit the most significant importance during the optimization
process, sorted in order of their significance:
• lm beam size: beam search width for LM application
• r value: multi-scale weight scaler r in Eq. (2)
• global average mix ratio: α in Eq. (6)
• global average window length: Tg in Eq. (6)
• mc postmask min db: maximum level of post-mask nor-

malization for multi-channel front end
• pad onset: pad-onset for diarization output segments
• sigmoid threshold: sigmoid threshold τ in Eq. (7)
Additionally, Fig. 11 displays a parallel coordinate plot that
highlights the relationships among the major hyper-parameters.
It is essential to recognize that the concentration of parameter

Figure 12: Scatter plots of DER vs DA-WER

Table 2: Sub-track dev set in terms of DA-WER (%).

CHiME-6 DiPCo Mixer6 Macro

System-A 22.8 27.6 12.8 21.0
System-B 16.9 18.7 7.9 14.4
System-C 16.7 18.8 7.9 14.5

Table 3: Sub-track eval set in terms of DA-WER (%).

CHiME-6 DiPCo Mixer6 Macro

System-A 25.3 25.0 15.8 22.1
System-B 25.6 22.9 15.9 21.4
System-C 25.7 22.4 15.2 21.1

values doesn’t directly correlate with parameter importance.
For the sub-track, since the oracle diarization segments are

provided, we focus on optimizing the ASR (Section 2.4) and
LM (Section 2.5) parameters using Optuna. All three systems
for the sub-task are optimized on audio signals produced us-
ing the default front-end parameters of the CHiME-7 baseline
system. The results of our three systems for the sub-track are
presented in Table 2. Note that the WER of System-B and
System-C are lower than System-A because their ASR model
has been trained on the combined CHiME-7 train and dev sub-
sets. The hyperparameters used for ASR models in the sub-
task (System-A/B/C) and main task (System-1/2/3) are sepa-
rately tuned for the two tasks, and do not share the same sets of
parameters.

Table 4 details the systems used in the main track with
our diarization system. For System-1 and System-3, we op-
timize the diarization module, front-end, and ASR simultane-
ously. Subsequent to this, we select a specific set of parame-
ters for both the diarization and the front-end. For System-3, an
ASR model undergoes separate optimization to achieve the low-
est DA-WER. For System-2, all modules involved in the DASR
task are optimized concurrently through an exhaustive hyperpa-
rameter search. It is important to note that the diarization error
rate (DER) values in Table 4 are not necessarily optimal. The
systems are primarily tuned to minimize the macro-averaged
DA-WER, not the DER.

4. Experimental Results
4.1. Evaluation Results

Table 2 and Table 3 display the sub-track results, which are
based on the oracle diarization segments. Our best-performing
systems exhibit 14.46% on the dev set and 21.1% on the eval
set. Note that for the dev set result in the sub-track, we rear-
range the splits and include the dev set split in the training set
for fine-tuning the ASR model. The tendency observed in the
dev set persists in the eval set, where dev-set optimized systems
(System-B/C) demonstrate improvement over System-A.

Table 4 and Table 5 display the main-track results, which
are based on the oracle diarization segments. The best-

Table 4: Main track dev set in DER, JER and DA-WER(%).

CHiME-6 DiPCo Mixer6 Macro

System-1
DER 38.6 29.5 15.7 27.9
JER 39.9 32.6 19.5 30.7

WER 41.7 40.0 18.0 33.2

System-2
DER 41.6 28.8 17.9 29.5
JER 43.1 31.7 21.9 32.2

WER 42.9 39.1 18.0 33.4

System-3
DER 38.6 29.5 15.7 27.9
JER 39.9 32.6 19.5 30.7

WER 42.3 40.8 18.1 33.7

* System-3 uses the same diarization system as System-1.

Table 5: Main track eval set in DER, JER and DA-WER(%).

CHiME-6 DiPCo Mixer6 Macro

System-1
DER 56.1 28.7 18.0 34.3
JER 56.7 35.7 17.8 36.7

WER 53.1 34.5 28.0 38.6

System-2
DER 56.0 30.1 20.2 35.4
JER 55.7 35.6 17.1 36.1

WER 52.8 36.6 25.9 38.4

System-3
DER 53.5 26.8 15.5 31.9
JER 57.3 35.4 22.1 38.3

WER 54.1 35.5 30.3 40.0

performing systems from our submitted systems score 33.2%
on the dev set and 38.4% on the eval set. Note that our DER
scores are relatively lower than those of other teams or the base-
line system because our systems are optimized solely based on
the DA-WER value; the DER value is not a factor in selecting
the best-performing system. Among our submitted systems, the
system with end-to-end hyper-parameter optimization exhibits
the lowest DA-WER.
4.2. Ablation study with baseline system

As mentioned in the CHiME-7 challenge documenta-
tion [16], the best-performing DA-WER of the baseline sys-
tem registers at 47.2%, and the DER at 28.8%, on the CHiME-
7 Dev set. We substitute the diarization of our system with
that of the baseline diarization system and assess its perfor-
mance. We refer to this system as Baseline Diar.+NeMo
FrontEnd-ASR. By evaluating the performance of this system,
we discern the contributions of diarization and the other com-
ponents of the system, such as the Front-end, ASR, LM, and
so on, as depicted in Fig. 12. In Fig. 12, we present a scatter
plot depicting the relationship between WER and DER for all
the systems we test during the development process. By sub-
stituting the baseline diarization with our diarization system,
we enhance the DA-WER from 38.4 to 33.22. It is notewor-
thy that the DER of our best-performing system for Dev stands
at 27.86%, which is close to the 28.8% of the baseline diariza-
tion. However, by utilizing our diarization system, we achieve
a significant absolute improvement in DA-WER by 5.2%. We
surmise that a contributing factor to this improvement is that the
baseline diarization system exhibits a considerably higher con-
fusion error rate compared to our system’s diarization. This dis-
crepancy can potentially lead to doubling the WER count, as a
word counted as a deletion in one speaker’s transcription might
be counted as an addition in another speaker’s transcription.
4.3. Discussions

The challenge of domain diversity underscores the diffi-
culty of identifying a single optimal configuration due to the
unique acoustic and lexical characteristics inherent in each do-
main. This challenge is further exacerbated by the scarcity of
domain-specific training data as our submitted systems are not
directly trained on the CHiME-6 development set. When con-

sidering the multi-channel front-end, it is essential that process-
ing be seamlessly integrated with diarization. This conclusion is
derived from the result we get from end-to-end hyper-parameter
optimization. In the realm of ASR techniques, confidence-based
ASR ensembling has shown significant promise, although it
is not included in the best-performing system. Lastly, pure
hyper-parameter optimization alone resulted in over a 16% rel-
ative DA-WER reduction. It is crucial to note that a low DER
does not necessarily guarantee a low DA-WER. Conversely, a
high DER will never result in a low DA-WER. Moreover, even
when DER values are similar, the resulting DA-WER can differ
significantly. This variation is evident when comparing false
alarms and confusion errors between the baseline diarization
and the diarization system of our submitted systems.

5. Conclusions
In this paper, we detailed the DASR system of NeMo team

for CHiME-7 challange. Our approach enhances the multi-
channel speaker diarization and ASR system with dereverber-
ation and channel clustering, allowing for effective handling
of the multi-channel input signal. We then employ late-fusion
techniques tailored for multi-channel diarization. Furthermore,
to boost the performance of the GSS module, we incorpo-
rate MIMO dereverberation and MVDR beamforming tech-
niques. Importantly, we optimize all non-differentiable param-
eters based on DA-WER, ensuring end-to-end inclusion of all
modules. All models and codebases discussed in this paper will
be made publicly available. Future work can encompass vari-
ous avenues for system enhancement. First, we aim to explore
improved methods to adapt the diarization model, specifically
MSDD-based models, to domain-specific data. To counteract
overfitting on the limited development dataset, we consider em-
ploying a mix of regularization techniques, varied training data,
and tailored learning rate controls. Second, we intend to further
fine-tune the ASR front-end system to cater not only to spatial
cues but also to cues related to speaker identity. We observe that
there is potential for refinement in spatial separation, as it oc-
casionally includes speech from the incorrect speaker. Lastly,
implementing large language models (LLMs) on top of the de-
coded ASR output may lead to further reductions in DA-WER
by rectifying lexically straightforward errors.

6. References
[1] I. Medennikov et al., “The STC system for the CHiME-6 chal-

lenge,” in Proc. CHiME Workshop, 2020.

[2] T. Yoshioka and T. Nakatani, “Generalization of multi-channel
linear prediction methods for blind MIMO impulse response
shortening,” IEEE Trans. Audio, Speech, and Lang. Process.,
vol. 20, no. 10, pp. 2707–2720, 2012.

[3] O. Kuchaiev et al., “NeMo: a toolkit for building AI applica-
tions using neural modules,” in Proc. Systems for ML Worshop,
NeurIPS, 2019.

[4] A. J. Muñoz-Montoro, P. Vera-Candeas, and M. G. Christensen,
“A coherence-based clustering method for multichannel speech
enhancement in wireless acoustic sensor networks,” in Proc. EU-
SIPCO, 2021, pp. 1130–1134.

[5] T. J. Park et al., “Auto-tuning spectral clustering for speaker
diarization using normalized maximum eigengap,” IEEE Signal
Processing Letters, vol. 27, pp. 381–385, 2020.

[6] NVIDIA, “Speech to frame label,” https://github.com/
NVIDIA/NeMo/blob/main/examples/asr/speech classification/
speech to frame label.py, [Online; accessed July 17, 2023].

[7] S. Watanabe et al., “CHiME-6 Challenge: Tackling Multispeaker
Speech Recognition for Unsegmented Recordings,” in Proc.
CHiME-6 Workshop, 2020, pp. 1–7.

[8] NVIDIA, “Speech data simulator,” https://github.com/NVIDIA/
NeMo/tree/main/tools/speech data simulator, [Online; accessed
July 17, 2023].

[9] A. Nagrani et al., “Voxceleb: a large-scale speaker identification
dataset,” arXiv preprint arXiv:1706.08612, 2017.

[10] J. S. Chung, A. Nagrani, and A. Zisserman, “Voxceleb2: Deep
speaker recognition,” arXiv preprint arXiv:1806.05622, 2018.

[11] D. S. Park et al., “Specaugment: A simple data augmenta-
tion method for automatic speech recognition,” arXiv preprint
arXiv:1904.08779, 2019.

[12] D. Snyder, G. Chen, and D. Povey, “Musan: A music, speech, and
noise corpus,” arXiv preprint arXiv:1510.08484, 2015.

[13] T. J. Park et al., “Multi-scale speaker diarization with dynamic
scale weighting,” arXiv preprint arXiv:2203.15974, 2022.

[14] N. R. Koluguri, T. Park, and B. Ginsburg, “TitaNet: Neural model
for speaker representation with 1d depth-wise separable convolu-
tions and global context,” in Proc. ICASSP, 2022, pp. 8102–8106.

[15] V. Panayotov, G. Chen, D. Povey, and S. Khudanpur, “Lib-
rispeech: an asr corpus based on public domain audio books,”
in Proc. ICASSP, 2015, pp. 5206–5210.

[16] S. Cornell et al., “The CHiME-7 DASR Challenge: Distant Meet-
ing Transcription with Multiple Devices in Diverse Scenarios,” in
Proc. CHiME Workshop, 2023.

[17] M. Wolf and C. Nadeu, “Channel selection measures for multimi-
crophone speech recognition,” Speech Comm., vol. 57, pp. 170–
180, 2014.

[18] M. Souden, J. Benesty, and S. Affes, “On optimal frequency-
domain multichannel linear filtering for noise reduction,” IEEE
Trans. on Audio, Speech, and Lang. Process., vol. 18, no. 2, pp.
260–276, 2009.

[19] C. Boeddeker et al., “Front-end processing for the CHiME-5 din-
ner party scenario,” in Proc. CHiME-5 Workshop, 2018.

[20] A. Laptev and B. Ginsburg, “Fast entropy-based methods of
word-level confidence estimation for end-to-end automatic speech
recognition,” in Proc. IEEE Spoken Language Technology Work-
shop (SLT), 2023, pp. 152–159.

[21] A. Gulati et al., “Conformer: Convolution-augmented transformer
for speech recognition,” in Proc. Interspeech, 2020.

[22] NVIDIA, “Conformer Transducer XL,” https://catalog.ngc.
nvidia.com/orgs/nvidia/teams/nemo/models/stt en conformer
transducer xlarge, [Online; accessed July 17, 2023].

[23] T. Kudo and J. Richardson, “SentencePiece: A simple and lan-
guage independent subword tokenizer and detokenizer for neural
text processing,” in Proc. EMNLP: System Demonstrations, Nov.
2018, pp. 66–71.

[24] Google, “SentencePiece,” https://github.com/google/
sentencepiece, [Online; accessed July 17, 2023].

[25] K. Heafield, “KenLM: Faster and smaller language model
queries,” in Proc. Workshop on Statistical Machine Translation,
Jul. 2011, pp. 187–197.

[26] ——, “kenlm,” https://github.com/kpu/kenlm, [Online; accessed
July 17, 2023].

[27] B. Roark et al., “The OpenGrm open-source finite-state grammar
software libraries,” in Proc. ACL 2012 System Demonstrations,
Jul. 2012, pp. 61–66.

[28] ——, “OpenGrm NGram Library,” https://www.opengrm.org/
twiki/bin/view/GRM/NGramLibrary, [Online; accessed July 17,
2023].

[29] J. Kim, Y. Lee, and E. Kim, “Accelerating RNN transducer infer-
ence via adaptive expansion search,” IEEE Signal Process. Let-
ters, vol. 27, pp. 2019–2023, 2020.

[30] T. Akiba et al., “Optuna: A next-generation hyperparameter op-
timization framework,” in Proc. ACM SIGKDD Intl. Conf. on
Knowledge Discovery and Data Mining, 2019.

[31] Y. Ozaki, Y. Tanigaki, S. Watanabe, and M. Onishi, “Multiobjec-
tive tree-structured parzen estimator for computationally expen-
sive optimization problems,” in Proceedings of the 2020 genetic
and evolutionary computation conference, 2020, pp. 533–541.

	 Introduction
	 Proposed DASR system
	 Dereverberation with channel-clustering
	 Speaker diarization
	 Multi-channel Voice Activity Detection
	 Multi-channel Diarization Module
	 Post-processing of diarization segments

	 Multi-channel ASR front-end
	 Automatic speech recognition
	 N-gram language model
	 Text Normalization

	 Hyper-parameter Optimization
	 Cascaded Optimization
	 End-to-End optimization
	 Parameter importance

	 Experimental Results
	 Evaluation Results
	 Ablation study with baseline system
	 Discussions

	 Conclusions
	 References

