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Abstract

This paper describes the joint effort of Brno University of
Technology (BUT), AGH University of Krakow and Univer-
sity of Buenos Aires on the development of Automatic Speech
Recognition systems for the CHiME-7 Challenge. We train
and evaluate various end-to-end models with several toolkits.
We heavily relied on Guided Source Separation (GSS) to con-
vert multi-channel audio to single channel. The ASR is lever-
aging speech representations from models pre-trained by self-
supervised learning, and we do a fusion of several ASR systems.
In addition, we modified external data from the LibriSpeech
corpus to become a close domain and added it to the training.
Our efforts were focused on the far-field acoustic robustness
sub-track of Task 1 - Distant Automatic Speech Recognition
(DASR), our systems use oracle segmentation.
Index Terms: speech recognition, human-computer interaction

1. Introduction

This paper describes the BUT Automatic Speech Recognition
(ASR) system for the CHiME-7 Speech to Text Transcription
(STT) Challenge. We present the detailed description of the
datasets, as well as technical details for the development of ASR
subsystems and the fusion.

2. Data

Our training setup is derived from the released baseline ES-
Pnet [1] recipe'. The training setup is composed from
Chime6 [2], Mixer6 (LDC2013S03), and Dipco [3] datasets,
where Chime6 and Mixer6 have training/dev/eval data split, and
Dipco is used only for development and evaluation.

Table 1 describes all the training data selection setups used
in our system building. The baseline and baseline + mixer6gss
shows amount of training data used in baseline recipe before
and after fixing bug in baseline recipe (missing GSS for Mixer6
data). The target data are always processed with GSS, and
the amount of GSS-processed training data is very limited in
the baseline recipe. Therefore, we decided to modify the data
preparation setup, and we created new data sets limited and lim-
ited+libri with following procedure:

* We added GSS-enhanced Mixer6 training data (see sec-
tion 3.1), which were missing due to a bug in the baseline
recipe.

* 3-way speed perturbation is applied only to the GSS data.

Uhttps://github.com/espnet/espnet/tree/master/egs2/chime7_task1/asrl
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Table 1: Training data selections

Dataset | #hours | GSS part

baseline 5922 1.7%
baseline + mixer6gss 6301 2.8%

limited 611 29.1%
limited+libri 1108 16.1%
gss-only 288 100%

e The data were re-balanced to increase the
weight of the GSS-enhanced data. We ran-
domly chose 80 hours of each combination of
(Chime6, Mixer6) x (IHM, MDM) type of the
training utterances.

e LibriSpeech [4] data augmented with background
speaker were added.

The limited dataset in Table 1 consists of the speed-
perturbed ‘full amount’ of the GSS-processed data and the
subsampled IHM+MDM data. The limited+libri has the aug-
mented LibriSpeech added, and the gss-only consists purely of
speed-perturbed GSS-processed data (Chime6, Mixer6).

2.1. Multispeaker augmentation

We used LibriSpeech dataset to simulate ‘multispeaker’ condi-
tion. All recordings were augmented by another randomly se-
lected recording, coming from the same subset of LibriSpeech,
to insert a so called ‘background speaker’. The background
speaker was expanded by 4 seconds of silence on both sides.
Then, this expanded audio was merged with the original au-
dio file starting in random position (and the expanded audio
was looped if the end of the background speaker was achieved
sooner than the end of the original audio). We maintain the
Signal-to-Noise Ratio (SNR) between these two audios in the
range of 5dB - 12dB randomly. Each of the audio was rever-
berated by a single Room Impulse Response (RIR) randomly
selected from a pool shown in Table 2. Finally, one of the fol-
lowing codecs (MP3, AMR, AMR-WB, G.711, G.726, G.729,
GSM-FR, TETRA, GSM-EFR) was applied with a probability

Table 2: Used RIRs

Dataset | #RIRs

AlIR14 [5] 214
REVERB [6] 192
RWCP [7] 3240
ReverbDB [8] 1364
Synthetic | 10000




of 1/7 on the resulting merged audio. The resulted merged audio
sounds like the original LibriSpeech in a reverberated environ-
ment with random speaker speaking in the background. Syn-
thetic RIRs were generated using the image method [9]. We
randomly sampled the dimensions of the room as width =
[1.5 —5.5], height = [2.0 — 9.5], length = [2.5 — 16.5]. The
source and microphone were randomly placed in the room and
the wall reflections were anything between 3 = [0.45 — 0.95].
We used only a ‘visible’ subset of RIRs from ReverbDB [8].

3. Speech Enhancement
3.1. Non-neural approach - GSS

The speech enhancement was based on the baseline system
provided by the organizers. First, k = 80% channels were se-
lected for further processing using the Envelope Variance [10]
method. The baseline Guided Source Separation (GSS) [11]
was used as a primary speech enhancement technique, which
integrates Weighted Prediction Error (WPE) dereverberation
method [12], estimation of target and undesired component
time-frequency masks using oracle diarization output and
Complex Angular Central Gaussian Mixture Model [13]
posteriors, and the mask-based Minimum-Variance Distortion-
less Response (MVDR) beamformer [14]. The GPU-based
implementation of GSS [11] with its default parameters
was used in the experiments as a baseline. Table 3 con-
tains the Word Error Rates (WER) results obtained using
different non-neural speech enhancement methods for the
pretrained ASR model on the development sets used in
the Challenge. Note, the pretrained models was WAVLM
based model trained with baseline recipe and uploaded
by organizers. The running script was simply called with
—--use-pretrained popcornell/chime7_taskl_asrl_baseline
option to quickly analyze speech enhancement technique.

To validate the performance of stronger filtering, we exper-
imented with reuse of CACGMM estimated target masks as a
post-filter applied to the output of the beamformer. This result
is presented in the second row of Table 3. To investigate the
performance of using the filter that allows for milder attenua-
tion than using masks directly, we have also experimented with
the use of a Convolutional Weighted Multichannel Wiener fil-
ter (CWMWEF) [15] as a convolutional beamformer which per-
forms dereverberation and source separation jointly. The gen-
eral diagram of the investigated systems is depicted in Figure 1.
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Figure 1: Evaluated non-neural speech enhancement.

A steering vector was selected as the principal eigenvec-
tor of the spatial covariance matrix (SCM) calculated using the
multiplication of the multichannel output of WPE and the es-
timated MVDR beamformer from the baseline system. This
steering vector and multichannel input were used to estimate
CWMWE. A Convolutional Blind Analytical Normalization
(CBAN) was applied to the output signal to compensate for at-
tenuation introduced by the beamformer. The weighting factors

Table 3: WER [%] using the pretrained baseline ASR with dif-
ferent non-neural speech enhancement on development sets.

Method Chime6 Dipco Mixer6
GSS (the baseline) 333 34.6 21.8
GSS (baseline+postfilter) 35.8 36.8 23.5
GSS (context 1s) 47.4 56.8 24.6
GSS+CWMWF+CBAN 49.5 58.4 26.9

for a single frequency bin k were calculated similarly to non-
convolutional Blind Analytical Normalization (BAN) [16] with
CWMWE coefficients w(k) € C'* and convolutional noise co-
variance matrix ®n (k) € C'E*IE where I, I are the number
of channels and the number of filter taps, respectively. For audio
segments in which the maximum signal amplitude after analyt-
ical normalization exceeded one, additional peak normalization
was applied to prevent clipping.

In the baseline system, the multichannel signal is ex-
tended by the left and right context of 15 seconds by de-
fault to compute WPE dereverberation filter and estimate masks
with CACGMM. Then the context is dropped when calculating
MVDR beamformer coefficients. Since the convolutional filter
performs joint dereverberation and separation the context for
this filter has been greatly reduced to minimize artifacts result-
ing from estimation filter from longer segments. So far in the
experiments we have shown that after reduction of the context
to 1 second the CWMWEF achieves comparable results to the
baseline system. Note that in those experiments, ASR system
was not fine-tuned for the new domain of audio data introduced
by stronger filtering. Therefore, we claim that presentation of
the processed data to the ASR system is crucial.

3.2. Neural approach

Contrary to GSS-based pre-processing, we experimented with
discriminative models. A general structure of the approach
is depicted in Figure 2. In the first stage, we employ Target
Speaker Extraction (TSE) models to provide per-channel esti-
mates of the speaker-of-interest speech where the enrollment
utterances are provided by the oracle diarization. Given the pre-
dictions, input audio, and the assumption that speech and noise
are not correlated, we estimate noise by subtracting speech from
mixtures. Subsequently, both speech and noise signals are trans-
formed via STFT to provide ratio masks. A speech mask is
computed as a ratio between the power spectrum of predicted
speech and the sum of the power spectra of speech and noise.
A noise mask is obtained analogically. We follow a standard
approach to estimate spatial covariance matrices of speech and
noise using the masks [17]. They are used to compute beam-
forming weights following Minimum Variance Distortionless
Response (MVDR) approach [18, 19], which combine input
channels previously selected analogically to the baseline GSS.
We experimented with three types of models for TSE —
SpeakerBeam [20], DPCCN [21], and a down-scaled version
of TF-GridNet [22] conditioned on the enrollment utterance
through Feature-wise Linear Modulation (FiLM) [23]. The TF-
GridNet-based TSE was inspired by that used in iNeuBe-X [24].
Therefore, we also use the encoder and TCN modules of TCN-
DenseNet [25] to extract speaker embedding from the enroll-
ment segments. Compared to TSE in iNeuBe-X, multiple chan-
nels are not concatenated to form the input, but for consistency
with other explored models, each channel is processed indepen-
dently. For computation reasons, we set number of blocks B=5
and LSTM hidden units H=128 in TF-GridNet. The number of
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Figure 2: Multi-channel speech enhancement based on neural

networks.

Table 4: WER [%] using the pretrained baseline ASR with dif-
ferent neural speech enhancement on development sets.

Method Mixing SNR  Chime6 Dipco  Mixer6
SpeakerBeam 5-30 54.4 50.4 21.6
DPCCN 5-30 50.9 48.6 21.6
TF-GridNet 5-30 50.9 49.8 21.8
SpeakerBeam —4--10 52.6 47.4 21.3

repeats in TCNDenseNet was reduced to 2. For SpeakerBeam
and DPCCN, we used hyperparameters following the respective
papers.

All the TSE networks were trained with the SNR objective.
Since the reference speech signals are required during training,
we dynamically simulated the data. As a source of speech, we
used the train-clean-360 subset of Librispeech. As a source of
background noise, MUSAN and WHAM [26] datasets were uti-
lized. The SNR intervals for adding noise are shown in Table 4.
To simulate room acoustic conditions, we reverberated the sig-
nals with simulated room impulse responses (with RT60 from
0.3 to 0.9) and those drawn from the ReverbDB corpus [8]. In
addition to the target speaker, audio mixtures contain up to 2
other voices, while only the target speaker’s speech examples
are also allowed.

The comparison of the TSE methods on the development
sets is presented in Table 4, this is with the baseline ASR sys-
tem employed. We observed noticeable degradation for Chime6
and Dipco compared to the baseline GSS. We hypothesize it is
mainly caused by the domain mismatch of test and training data
and the inability of neural models to generalize. While poor
generalization of time-domain models is common, we did not
observe improvements from using TF-GridNet. However, we
can confirm that TF-GridNet provides better predictions com-
pared to other models as we observed differences in results
when experimenting with the approach where SCMs were com-
puted directly using network outputs (without masking).

4. Automatic Speech Recognition systems

We experimented with Encoder-Decoder ASR models coming
from various toolkits. Some ASR systems are built on top of
‘fixed’ pre-trained feature representations, while in other cases
these pre-trained models are ‘fine-tuned’.

4.1. HuggingFace

We fine-tuned the WavLM large model by adding a conformer
layer and a RNN transducer [27] on top of it. The conformer
layer consists of 4 attention heads, a kernel size of 31, down-
sampling in time by a factor of 4 and dropout with rate 0.1.
These are the default values of the torchaudio implementation
we used. The predictor network consists of 2 LSTM layers and
we also used the RNNT loss from torchaudio implementation.

The model was fine-tuned using GSS data from Chime6 and
Mixer6 datasets (i.e. gss-only in Table 1). The CNN encoder
of the WavLM model was frozen during the fine-tuning, updat-
ing only the weights from the transformer layers and the RNNT
modules. We applied a learning rate of le-4 with a warmup
of 1000 steps, and a batch size of 16 samples. The model
was trained for 30000 steps using the AdamW optimizer with a
weight decay of 0.005. For the generation of the transcriptions,
we used the RNNT beam search decoder from torchaudio with
a beam size of 20.

4.2. WavLM with speaker information

We also explored adding the target speaker information to the
WavLM model. This could potentially help the model to fo-
cus on transcribing the target speaker when the GSS signal con-
tains interference from non-target speakers. We used x-vectors
from VBX as speaker embeddings, linearly projected them and
summed them to the input of the first transformer layer. We
learned a scale factor for this projected embedding, which was
initialized to O so that at the beginning of training, no speaker
information is added and the model is equivalent to the original
WavLM. We verified that during training, the scale factor in-
creased in magnitude, suggesting that the model is in fact using
the target speaker information. In order to train the model with
a larger amount of speakers, we augmented the training data
with artificial mixtures of up to 3 speakers from Librispeech,
resulting in around 200k extra utterances.

4.3. EspNET

We selected two pre-trained models via S3PRL
wav2vec2_large_1v60_cv_swbd_fsh [28] and
wavlm_large [29] for building systems with ESPnet toolkit.

WavLM Large + Transfomer This system followed the
baseline recipe, therefore the initial wavim_large model is fol-
lowed by Transformer based model: encoder (12 layers) — de-
coder (6 layers).

Wav2Vec2 + Conformer This system is based on the
Conformer architecture [30] and is composed of 12 encoder lay-
ers and 6 decoder layers. The conformer encoder layer incor-
porates, in addition to a self-attention module, a convolutional
layer in between of two feed-forward modules. The decoder
was built using masked self-attention as well as cross-attention
between the encoder embeddings and the decoder. Each en-
coder and decoder layer outputs 512 dimensional embeddings;
attention is done with 8 parallel heads and the feed-forward
module expands the data into 2048 dimensions. We used the
standard ESPnet2 training recipe with 40k warm-up steps and
learning rate 2 - 1073,

Both models were trained with frozen update of the pre-
trained models (WavLM, Wav2Vec2). The model output are
500 Sentencepiece [31] unigram units. The model is trained
with the joint CTC/Attention loss with the CTC weight of 0.3.

The systems were further fine-tuned with the gss-only
data (in Table 1) using lower learning rate, for this step
we ‘defreezed’ weights in the pre-trained models (WavLM,
Wav2Vec2) from S3PRL.

44. K2

The K2 codebase was extended to accomodate S3PRL models,
such as wavim-large [29], as a fixed feature extraction. The
wavlm-large model transforms raw audio signal to 1024 dimen-
sional embeddings with 20ms time-shift. We duplicate each em-



Table 5: Word Error Rates [%] obtained on dev parts of the datasets for various system architectures and training data.

‘ Pre-trained model fine-tuned ‘ Architecture (toolkit) ‘ Training data Enh. ‘ Chime6 Dipco Mixer6

0 |WavLM Large X Transformer-Transformer (ESPnet) baseline GSS 335 354 237
1 |WavLM Large X Transformer-Transformer (ESPnet) limited GSS 322 332 21.1
2t |WavLM Large X Transformer-Transformer (ESPnet) limited+libri GSS 302 319 199
2(S)| WavLM Large v Transformer-Transformer (ESPnet) 2h —gss-only GSS 254 298 187
3" |WavLM Large X Transformer-Transformer (ESPnet) limited+libri ~ GSS_postfilter| 329 335 21.8
3 |WavLM Large v Transformer-Transformer (ESPnet) (3") —gss-only GSS_postfilter| 26.6 31.1 19.6
4" |WavLM Large v Conformer-Transformer (ESPnet) limited+libri GSS 202 309 174
4 |WavLM Large v Conformer-Transformer (ESPnet) 4"y —gss-only GSS 2577 30.1 169
5t |Wav2Vec2 Large X Conformer-Transformer (ESPnet) limited+libri GSS 37.9 403 21.7
5 |Wav2Vec2 Large v Conformer-Transformer (ESPnet) shH — gss-only GSS 31.3 382 202
6 |WavLM Large v CTC (HuggingFace) gss-only GSS 40.2 504 287
7 |WavLM Large v Conformer-Transducer (HuggingFace) | gss-only GSS 280 36.0 17.2
8 |WavLM Large v Conformer-Transducer (HuggingFace) | gss-only GSS 263 31.7 158
9 |WavLM Large v LinSum XVector librimix+gss GSS 284 341 178
10 |WavLM Large X | Zipformer-Transducer (K2) |limited GSS | 300 325 175
F1 |- 2+8 - GSS 253 312 183
F2 |- 4+8 - GSS 25.0 302 16.0
F3 |- 3+4+8 - - 238 288 154

bedding vector to create a stream with 10 ms time-steps.

On top of these embeddings, we trained a Zipformer-
Transducer model from the streaming ASR recipe?. Due to
using a pre-encoder, we removed the Conv2dSubsampling
front-end module in Zipformer and we reduced the numbers of
ZipformerEncoderLayer modulesto: [1,1,1,1,1].
To link the wavim-large pre-encoder to Zipformer encoder, a
trainable linear transform without bias was introduced to re-
duce the dimensionality from 1024 to 384 dimensions. The
model is using a stateless Predictor network in Transducer
architecture [32]. And, the training is accelerated by a
pruning secondary output-layer that pre-selects the candidate
tokens [33]. The Zipformer-Transducer model uses half-
precision, the model size is 386 MB, and the output are 500
sentence-piece [31] unigram units. The wavim pre-econder had
frozen parameters.

We trained for 15 epochs with base learning-rate 0.025,
and we observed an increased level of overfitting. The over-
fitting was apparent for the valid_pruned_loss objective,
starting after the 4th epoch. We used the limited dataset from
Table 1. We did not use SpecAugment because of using the
S3PRL feature transform pre-encoder.

For decoding we used the fast_beam_search_nbest
method with default hyper-parameters. For the final fusion, we
exported V-best lists of size up to 200 generated by sampling a
lattice.

4.5. System fusion

To facilitate effective fusion of outputs of the different systems,
we first compact each resulting /N-best list into a CTM using
the Hystoc tool [34] with the temperature parameter set to 1.0.
To merge the CTMs, we used NIST Rover [35], where the se-
lection of output words is done according to the word frequency
and maximum confidence. In Rover, we tuned the o parameter,

2https://github.com/vesis84/icefall/tree/
master/egs/librispeech/ASR/pruned_transducer_
stateless7_streaming

which is a trade-off between frequency of word occurrence and
maximum word confidence, as well as the null word confidence
(also known as blank symbol confidence). In specific, & and
null word confidence were set to 0.8 and 0.4, respectively (for
the best performing fusion F3). We did not use the time infor-
mation during fusion.

Figure 3: Hystoc confidences for n-best set ABC,
AB, and AC with probabilities 0.7, 0.2, and 0.1 re-
spectively.

5. Results

The results are presented in Table 5, in which we in-
dicate the pre-trained feature transform (WavLM Large or
Wav2Vec2Large), whether the feature transform was fixed or
fine-tuned, the encoder-decoder parts of the ASR model on top
of that transform (e.g. Trasformer-Transformer), and the ASR
toolkit that was used. The training data indicators refer to Ta-
ble 1 and for example *(3") —gss-only’ indicates that the sys-
tem was trained as system (37) and then fine-tuned using the
gss-only data. Development sets were enhanced with the base-
line GSS for almost all systems, except for systems (3) and 3hH
where *GSS_postfilter’, i.e. GSS with enabled mask-based post-
filtering, was used.

Our limited training data selection presented above (system
(1)) in Section 2 is giving 1.3-2.6% absolute gain over base-
line (0) with significant increase of training speed as the limited
set contains 10x less data than baseline one. Moreover, next
1.2-2.0% absolute gain is reached with adding ‘enhanced’ Lib-
rispeech data for system (2T) that was trained with limited+libri
dataset. Additional fine-tuning of this system to the gss-only
data is giving further significant 1.2-4.8% absolute WER re-
duction resulting in system (2(S)). The system (2(S)) was sub-
mitted as the single best system to the challenge.

The comparison of systems 2% and (3) shows a drop in



ASR performance similar to the one observed in Table 3, the
difference is the reuse use of the CACGMM TF masks on the
output of MVDR beamformer as GSS_postfilter in (37). Again,
the significant drop of WER from (3" to (3) confirms the great
importance of fine-tuning with the in-domain data.

The WavLM based systems were found superior to
Wav2Vec2 systems, see comparison (4) and (5). Replacing
the CTC loss by a RNN-T loss brought large improvements in
WER, as seen in the gap between systems (6) and (7), showing
the importance of incorporating a language model for this task.
Moreover, when also fine-tuning the CNN encoder in WavLM,
and lowering the learning rate from le-4 to le-5, we observe
significant WER improvements between systems (7) and (8).
Conditioning WavLM with speaker information didn’t bring
improvements as seen between systems (8) and (9). More work
remains to be done to see if improved results can be achieved by
using other conditioning methods like Adaptive Instance Nor-
malization and FiLM layers.

Next, we trained an ASR system with the K2 toolkit us-
ing Zipformer-Transducer architecture (system (10)). Unfortu-
nately, we did not have time to finalize this work for the sys-
tem presentation at the workshop. However, this work could be
very promising for future, as it significantly outperforms sys-
tem (1) trained on same data, while both systems are without
fine-tuning the WavLM model.

Fusing the best performing systems (F1-F3) did provide
modest gains over the individual best systems. Despite the per-
formance drop observed on the development set for system (3)
with GSS_postfilter, in the fusion (F3) the system (3) brings
complementary information, improving the result compared to
fusion (F2). This phenomenon might be justified by the fact
that for some part of the data-set the stronger filtering is actu-
ally helpful.
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