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Abstract
We introduce our submission to the Distant automatic speech
recognition (DSAR) task of the CHiME 7 challenge. Our sys-
tem uses end-to-end diarization with vector clustering (EEND-
VC), guided source separation (GSS), and attention-based
encoder-decoder and transducer-based ASR systems. Our
submission exploits pre-trained self-supervised learning (SSL)
models to build strong diarization and ASR modules. We
also explore data augmentation using contrastive data selec-
tion based on representations from SSL models. Besides, we
use self-supervised adaptation (SSA) to adapt these modules to
the recording conditions of each session. Our DASR system
achieves a 36 % diarization error rate (DER) reduction and 47 %
word error rate reduction (WER) over the baseline on the main
track of the evaluation set and ranked third in the challenge.
Index Terms: Robust ASR, speaker diarization, CHiME-7
DASR

1. Introduction
Recognizing conversational speech captured by distant micro-
phones remains one of the major challenges for automatic
speech recognition research (ASR). The CHiME challenge se-
ries has provided, over the years, datasets with increased levels
of difficulty to measure the progress in the field of distant ASR
(DASR), starting with single-talker DASR tasks in CHiME 1-
4 [1, 2], then multi-talker tasks in CHiME challenges 5-6 [3, 4].
However, the evaluation data of the past editions covered rela-
tively homogeneous recording conditions. CHiME-7 increased
the difficulty by requiring the design of a single DASR system
capable of handling multiple recording conditions varying in
terms of the microphone array used (number and configuration)
and the type of conversations (multi-talker home recordings and
2-speaker interviews) and recording environments.

In this paper, we propose a multi-talker DASR system for
the CHiME-7 DASR task. A multi-talker DASR system re-
quires identifying when each speaker speaks and transcribing
the speech correctly even if multiple speakers speak at the same
time and there is noise and reverberation. The problem re-
quires combining speech enhancement (dereverberation, sepa-
ration, and denoising), diarization, and ASR. Our proposed sys-
tem follows a similar pipeline as the baseline system [5], i.e.,
speaker diarization, followed by speech enhancement (SE) with
guided source separation (GSS) and then ASR. However, we
replaced the baseline diarization system with an end-to-end di-
arization with vector clustering (EEND-VC) [6, 7] system and
developed four powerful ASR back-ends.

Our system has the following characteristics:

∗Equal contribution

1. Robustness to recording conditions: We exploit pre-
trained self-supervised learning (SSL) models to build
strong diarization and ASR systems. We used WavLM,
which is trained on large amounts of noisy speech data,
to extract features for the diarization and ASR mod-
ules. In addition, we also employ a pre-trained ECAPA-
TDNN model to extract robust speaker embeddings for
diarization.

2. Adaptation to recording conditions: We use self-
supervised adaptation (SSA) for diarization and ASR to
adapt to the recording conditions of each session. We use
pseudo-labels generated from the combination of multi-
ple systems or microphones.

3. Independence to the microphone array configura-
tion: We use single-channel diarization and DOVER-
LAP to combine the results of each channel. This allows
exploiting multiple channels while keeping the diariza-
tion independent of the number and configuration of the
microphones. Enhancement is performed with WPE and
GSS using all microphones available, independently of
the array configuration. Finally, ASR is performed on
the single-channel output of GSS.

4. Handling varying number of speakers: EEND-VC
can handle an arbitrary number of speakers as long as the
maximum number of speakers in a segment can be fixed.
Usually, the segment length has to be relatively short (a
few seconds) to ensure that no more than the maximum
number of speakers are active. Here, the characteristics
of the CHiME-7 DASR task, which consists of conversa-
tions of up to four speakers, allow us to use much longer
segments for diarization, i.e., 80 sec, by fixing the maxi-
mum number of speakers to four.

In addition, we employed a two-step training strategy for train-
ing the SSL-based diarization and ASR modules. We first
trained the downstream models with fixed SSL model param-
eters and then retrained the whole system, including the SSL
model parameters. Moreover, we also employed contrastive
training data selection based on SSL models to increase the
amount of training data [8]. We report detailed experiments
showing the contribution of the different components of each
module to justify our design choices.

2. System overview
Figure 1 is a schematic diagram of the proposed DASR system.
As shown in the figure, it follows a similar processing flow as
the baseline. However, we modified the different components.
The details of the diarization and ASR modules are described in
Section 3 and 4.
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Figure 1: Proposed recognition system for DASR track.
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Figure 2: Diarization module.

For speech enhancement, we used the baseline GSS sys-
tem [9]. We set the filter taps of WPE at five and the iterations
of cACGMM [10] optimization with diarization guidance at 10.
We call this system SE1. We also used WPE before diarization.

3. Diarization with EEND-VC
Our diarization system is shown in Fig 2. It processes each
channel separately using EEND-VC [6, 7], and then com-
bines the output using diarization output voting error reduc-
tion + Overlap (DOVER-LAP) [11]. We base our implemen-
tation on the publicly available implementation of EEND-VC1

and DOVER-LAP.2 EEND-VC estimates speaker activities and
speaker embeddings on speech segments of a long recording
and then clusters the speaker embeddings to stitch the segments
together to form the diarization results.

We trained EEND-VC to handle up to four speakers in each
segment. This enabled us to process long segments of 80 sec,
which provided sufficient data to generate reliable speaker em-
beddings. We call this system DIA1. To further reduce speaker
confusion, we used the pre-trained ECAPA-TDNN model [12]
employed in the baseline system [5] to extract embeddings for
each speaker in the segment, given the speech activity from
EEND-VC. Here, we removed the speech overlapping regions
to reduce speaker confusion. We call this system DIA2. Finally,
we performed self-supervised adaptation (SSA) on each session
to retrain the EEND-VC model using labels from the combina-
tion of the diarization results from all channels. We call these
systems DIA3 and DIA4. The details of our diarization systems
are described in [13].

3.1. System configuration

We used the pre-trained WavLM-large to obtain the input
speech features [7, 14]. The features consisted of the learnable
weighted sum of all transformer layers of the WavLM, includ-
ing weights for each feature dimension. The EEND-VC model
consisted of six-stacked Transformer encoder blocks with eight
attention heads. The input feature dimension was 1024, and the
output dimension for each attention block was 256. We pro-

1https://github.com/nttcslab-sp/
EEND-vector-clustering

2https://github.com/desh2608/dover-lap

jected the encoder’s output with a linear layer into four output
streams, each consisting of the frame-by-frame speaker activity
binary decisions and the speaker embedding of 256 dimensions.

We used a two-stage approach to train our system. First,
we trained the system using simulated multi-talker record-
ings of up to four speakers, using the LibriSpeech [16], MU-
SAN for noise [17], and room impulse responses (RIRs) from
SLR28 [18]. The simulated training data comprised 100,000
speech mixtures, 12,685 hours, and 2,338 speakers. We then
retrained the model using randomly selected channels from the
CHiME-6, Mixer 6 training sets, and part of DiPCo dev set.3

This amounted to 182 recordings, 80.3 hours, and 114 speak-
ers.

For the first training stage, we fixed the WavLM parame-
ters and trained the model for 25 epochs with a learning rate of
10−3, a batch size of 2048, and a segment size of 15 sec. For
the second stage, we trained the full model (including WavLM)
on segments of 80 sec, for three epochs with a learning rate of
10−5 and a batch size of one. For SSA, we used the labels ob-
tained with the EEND-VC w/ ECAPA model and retrained the
model for each session and each microphone independently for
one epoch with a learning rate of 10−5.

3.2. Diarization Results

Table 1 compares the performance of our proposed diarization
systems with the baseline on the development set. For DIPCO,
we report in parenthesis results on sessions S26 and S29, which
were not used during training.

DIA1, which uses the original EEND-VC, significantly re-
duces the DER over the baseline for the three datasets. How-
ever, it still has relatively high speaker confusion errors, espe-
cially for the CHiME-6 data. This shows that the speaker em-
beddings of EEND-VC are not sufficiently discriminative. We
can significantly reduce speaker confusion errors with DIA2,
which replaces the embeddings of EEND-VC with those com-
puted with the pre-trained ECAPA-TDNN model. The ECAPA-
TDNN model has seen many more speakers during training than
EEND-VC, which may explain the improved speaker discrimi-
nation. We used the results of DIA2 to generate pseudo-labels
for SSA for DIA3. DIA3 also uses WPE as pre-processing to
improve the segmentation. Finally, the best results were ob-
tained with DIA4, which uses ECAPA-TDNN embeddings with
the adapted system. It achieved a 35 % relative DER improve-
ment over the baseline. We used DIA4 in our submission.

Table 2 shows the DER on the eval set. We observe a similar
trend. Our system also achieved third place in terms of DER.

4. ASR back-end
Figure 3 shows the configuration of the ASR system. We de-
veloped four ASR back-ends that use WavLM-Large as the up-
stream model. These four systems differ in the configuration of
the downstream model. Interestingly, the four ASR back-ends
achieve similar performance, and combining these systems im-
proves performance. We also used a Transformer-based lan-
guage model (LM), which was used for N-best re-scoring. Fi-
nally, we performed session-wise SSA.

3We used the Mixer 6 interview set, which contains labels for the
interviewee only. We thus applied an early-stage diarization system on
the lapel mics to generate activity references for the interviewer. Our
training set also included sessions S28, S33, and S34 of DiPCo dev set.



Table 1: Diarization results in terms of confusion (CF), false alarm (FA), missed (MI), and DER computed with md-eval with collar of
0.25 sec on dev set. We used WPE [15] pre-processing for DIA 3 and 4. The numbers in parenthesis are for sessions S26, S29 of DiPCo
not used for training.

CHiME-6 DiPCo (S26, S29) Mixer 6 Macro
ID Model CF FA MI DER CF FA MI DER CF FA MI DER DER

Baseline 14.5 3.2 22.3 40.0 13.0 4.7 12.0 29.8 (29.9) 1.7 1.0 13.8 16.6 28.8

DIA1 EEND-VC 15.1 3.6 17.9 36.6 8.5 5.0 9.4 22.8 (20.7) 0.6 1.7 8.0 10.3 23.2
DIA2 DIA1 w/ ECAPA 8.8 3.9 17.5 30.1 5.7 5.3 9.2 20.2 (20.6) 1.3 1.7 8.1 11.0 20.4

DIA3 DIA2 + SSA + WPE 15.4 3.8 16.4 35.7 7.1 3.8 8.8 19.7 (18.2) 0.2 1.8 7.6 9.6 21.7
DIA4 DIA3 w/ ECAPA 8.1 4.0 16.2 28.2 4.7 4.0 8.8 17.5 (17.6) 0.2 1.8 7.7 9.7 18.5

Table 2: Diarization results on eval set.

CHiME-6 DiPCo Mixer 6 Macro
ID Model CF FA MI DER CF FA MI DER CF FA MI DER DER

Baseline 28.7 11.2 16.4 56.3 10.2 5.8 11.8 27.9 1.5 1.0 6.9 9.3 31.2

DIA1 EEND-VC 16.7 3.1 20.0 39.8 8.5 9.1 9.3 26.9 1.4 1.6 3.9 6.8 24.5
DIA2 DIA1 w/ ECAPA 11.4 3.5 19.1 34.0 6.3 9.4 9.1 24.8 0.3 1.6 3.9 5.7 21.5

DIA3 DIA2 + SSA + WPE 13.4 2.1 20.3 35.9 6.6 6.9 9.1 22.6 0.1 1.6 3.9 5.6 21.4
DIA4 DIA3 w/ ECAPA 10.0 2.3 19.7 32.0 5.9 7.1 9.0 22.0 0.1 1.6 3.9 5.6 19.9
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Figure 3: ASR module.

4.1. Training data

We created several training sets for ASR; the first includes
only the 91 hours of CHiME-7 training data (processed with
GSS) [5], the second adds 960 hours of LibriSpeech training
data [16], and the third also includes between 655 and 912 hours
of VoxCeleb1+2 training data [19]. We selected the samples
from the VoxCeleb dataset closest to the CHiME-6 data using
the data selection algorithm that relies on discrete speech rep-
resentation [8], which we describe in more detail below. Since
VoxCeleb data is not transcribed, we used the Conformer-CTC
model provided by NeMo [20]4 to generate the transcriptions.
We did not use the CHiME-7 dev sets to train the ASR back-
ends. Other data preparation procedures followed the CHiME-7
baseline.

To leverage the VoxCeleb1+2 [19] data, we utilized the con-
trastive data selection algorithm in an unsupervised fashion [8].
This algorithm uses a general and a target LM to select data
with high domain relevance scores on the target domain and
low scores on the general domain. The LMs consist of 5-gram
LMs trained on discrete acoustic units. We use Kneser-Ney
smoothing during training. To generate the acoustic units, we
discretized the hidden features of the 21st WavLM layer instead
of using the w2v-BERT codebook as proposed in [8]. For the

4https://huggingface.co/nvidia/stt_en_
conformer_ctc_large

quantization, we run the k-means algorithm with 1024 clusters.
To train the two LMs, we assigned all CHiME-7 training and
development sets to the target domain and the VoxCeleb1+2
data to the general domain. We calculated the domain rele-
vance score by measuring the probability differences between
the target domain LM and the general domain LM to reduce the
VoxCeleb1+2 data by a quarter, a choice made through experi-
mentation.

We also levaraged the VoxCeleb1+2 transcriptions for train-
ing the Transformer-based LMs. We first trained a long short-
term memory (LSTM)-based LM, which has the standard con-
figuration5, using the CHiME-7 training data. By using this
LSTMLM, we calculated perplexities (PPLs) for each of the
transcriptions. Then, by setting a PPL threshold, we selected
the transcriptions that showed lower PPLs, i.e., the transcrip-
tions that have similar characteristics to the CHiME-7 training
data. Hereafter, we refer to the selected transcriptions as the
VoxCelebLM data. Finally, by using the CHiME-7 & VoxCele-
bLM data, we trained Transformer-based LMs. The PPL thresh-
old was optimized based on the Transformer-based LMs’ PPLs
for the CHiME-7 dev data.

4.2. Two-step training scheme

In this work, we found a novel training scheme that consisted of
two steps. All ASR models used WavLM-Large for feature ex-
tractor, followed by four types of downstream models(see Sec-
tion 4.3). First, we pre-trained ASR models while freezing SSL
modules. We used Adam optimizer within the Noam sched-
uler with 40k warm-up steps, and the maximum learning rate
was set to 2.5 × 10−3. Then, the unfrozen SSL and the pre-
trained ASR model were jointly fine-tuned with the ReduceL-
ROnPlateau scheduler. That is, we halved the learning rate start-
ing at 1×10−5 if the validation loss was not improved. We used
early stopping with a patience of 5 for both training steps.

5https://github.com/espnet/espnet/blob/
master/egs2/chime7_task1/asr1/conf/train_lm.
yaml



4.3. Configuration of ASR back-ends

4.3.1. Conformer encoder - S4 decoder (ASR1&2):

The first two systems use a conformer encoder [21] and state-
space (S4) [22] blocks for the decoder. The conformer configu-
ration is identical to the base model described in Section 5.2 of
[23]. We followed the S4 decoder configuration and the opti-
mization setup of ESPnet’s recipe6. We used the weighted sum
of the layers of the WavLM models as input features. We aver-
aged 5-best checkpoints for evaluation and decoded transcrip-
tions with a beam width of 20. ASR 1 and 2 models are first
trained using CHiME-7& Librispeech data in step 1 and then in
step 2 with CHiME-7 data for ASR1 and CHiME-7&VoxCeleb
data for ASR2.

4.3.2. Branchformer encoder - S4 decoder (ASR3):

For the third model (ASR3), we replaced the conformer of ASR
1 and 2 with a Branchformer encoder [24]. The configuration
follows ESPnet’s recipe 7, except we set the dimension of the
convolutional gating MLP (cgMLP) to 2048. To focus on the
linguistic information most relevant to ASR rather than the di-
verse representation [14, 25], we used the concatenation of the
outputs of the 21st and 22nd layers of the WavLM model as
input features instead of the weighted sum of all layers. This
model was trained with CHiME-7&LibriSpeech&VoxCeleb in
both training steps.

4.3.3. Branchformer-Transducer (ASR4):

The last model also uses a Branchformer encoder but a trans-
ducer decoder [26]. The ASR encoder contains two-layer
2D-CNNs followed by 18 Branchformer blocks [24] with the
cgMLP linear layer of 2048 units. The ASR encoder re-
ceived the weighted sum of all WavLM layer outputs. The
prediction and joint networks had two-layer 640-dimensional
LSTMs and a 512-dimensional feed-forward network, respec-
tively. Our transducer model was optimized by the combined
loss [27], which consisted of RNNT [26], CTC [28], and inter-
nal LM (ILM) [29] training objectives. The weights of CTC
and ILM losses in both stages were set to 0.5 and 0.1, respec-
tively. Scheduled Sampling (SS) using ILM [27] was applied
to reduce exposure bias in both steps. We used CHiME-7 and
LibriSpeech datasets for step 1 and added the selected Vox-
Celeb1+2 data to them for step 2. Note that we used the top
one-third of the selected VoxCeleb1+2 data for step 2. The
batch sizes in the first and second stages were set to 64 and
32, respectively.

4.3.4. Transformer-LMs (LM):

We performed LM rescoring using Transformer-based LMs
trained on CHiME-7 & VoxCelebLM data. We adopted
two LMs, i.e., the forward and backward Transformer-based
LMs [30]. Both models have a standard configuration8, except

6https://github.com/espnet/espnet/blob/
master/egs2/librispeech/asr1/conf/tuning/train_
asr_s4_decoder.yaml

7https://github.com/espnet/espnet/blob/
master/egs2/librispeech/asr1/conf/tuning/train_
asr_branchformer_hop_length160_e18_linear3072.
yaml

8https://github.com/espnet/espnet/blob/
master/egs2/librispeech/asr1/conf/tuning/train_
lm_transformer2.yaml

Table 3: Effect of data augmentation with contrastive data se-
lection from VoxCeleb1+2. Note that we here report WERs (not
DA-WERs).

VoxCeleb1+2 CHiME-6 DiPCo Mixer 6 Macro

- 28.9 29.6 16.9 25.1
all 28.5 29.6 17.6 25.2
quarter 29.1 29.1 16.3 24.8

that we reduced the number of layers to 8 and the number of
units to 1024.

4.4. Decoding and rescoring settings

The diarization sometimes produces long speech segments.
This affects the decoding speed. We thus applied the VAD from
pyanote [31, 32] on the enhanced speech to cut segments longer
than 60 sec into shorter ones before ASR.

In the decoding step, we generated 32-best hypotheses for
each ASR system and performed LM rescoring using forward
and backward LMs. Thus, the final hypotheses were determined
by the best score for each utterance. Each hypothesis generated
from each ASR back-end with forward and backward LMs is
determined as follows:

Ŷ = arg max
Y

{
log pASR(Y |X) + µ1 log pFLM(Y )

+ µ2 log pBLM(Y ) + µ3 |Y |
}
, (1)

where X is the input speech, Y is the hypothesis,
log pASR(Y |X) is the ASR model score for Y given X ,
log pFLM(Y ) and log pBLM(Y ) are the forward and backward
LM (FLM and BLM) scores for Y , µ∗ are the weights for FLM,
BLM, and length penalty |Y | scores (these weights were tuned
using the development set), and Ŷ is the best hypothesis.

4.5. Self-supervised adaptation (SSA)

For further improvements of ASR performance, we also per-
formed session-wise SSA for each ASR back-end, using labels
obtained from the first recognition pass using the combination
of the four ASR systems. For SSA, we retrained the ASR mod-
els for each session for one epoch with AdamW optimizer using
a learning rate of 5× 10−6. After SSA, we performed the sys-
tem combination again.

4.6. ASR Results

4.6.1. Effect of data selection

Table 3 shows the results of preliminary experiments to check
the effectiveness of data selection described in Section 4.1. We
find that the model trained by adding all VoxCeleb1+2 data
achieved worse performance than the baseline model trained
with no additional data on the macro WER. On the other hand,
the model trained with a quarter of VoxCeleb1+2 data achieved
better overall performances than the other models.

4.6.2. Effect of two-step training

Table 4 shows the effects of the two-step training in our pre-
liminary experiments on the dev set. The second training step
improves the performance for both encoder-decoder and trans-
ducer architectures for all datasets. Overall, retraining the
model, including the WavLM parameters, achieves more than



Table 4: Effect of the second step on the encoder-decoder (E-D)
and transducer (Tran) architectures. Note that we here report
WERs (not DA-WERs).

CHiME-6 DiPCo Mixer 6 Macro

E-D step 1 29.6 30.7 17.4 25.9
+ step 2 24.3 29.0 16.0 23.1

Tran step 1 29.8 30.1 16.5 25.5
+ step 2 24.9 28.7 14.9 22.8

Table 5: DA-WER on the dev set with oracle diarization and
SE1 for far-field acoustic robustness task (sub-track1). The
numbers in parenthesis are for sessions S26, S29 of DiPCo.

ID Model CHiME-6 DiPCo (S26,29) Mixer6 Macro

(0) Baseline w/ SE1 32.2 33.1 (35.0) 20.2 28.5

(1) ASR1 22.5 27.1 (28.2) 12.3 20.7
(2) ASR2 23.0 26.1 (26.5) 12.4 20.5
(3) ASR3 21.9 26.6 (27.4) 12.8 20.4
(4) ASR4 22.1 26.3 (27.2) 12.6 20.3

(5) (1)+(2)+(3)+(4) 21.0 25.7 (26.2) 11.9 19.5
(6) (5)+LM rescoring 20.9 25.5 (26.2) 11.9 19.4

(7) ASR1+SSA 21.3 25.4 (25.4) 12.0 19.6
(8) ASR2+SSA 21.8 25.5 (25.7) 12.1 19.8
(9) ASR4+SSA 21.1 25.5 (26.1) 12.0 19.5

(10) (7)+(8)+(9) 20.7 25.2 (25.4) 11.7 19.2
(11) (10)+LM rescoring 20.7 25.0 (25.4) 11.7 19.2

10 % relative Macro-WER improvement. This result suggests
that WavLM (SSL) fine-tuning is crucial in achieving competi-
tive ASR performance.

4.6.3. Overall evaluation on the sub-track with oracle diariza-
tion

Table 5 shows the ASR results using our proposed ASR systems
for the development set of the sub-track using Oracle diariza-
tion and SE1. The different individual ASR back-ends perform
similarly and achieve a relative WER improvement of about
28.8 % over the challenge baseline. Combining these systems
further improves the macro WER by about 1 %, and LM rescor-
ing achieves a small but consistent improvement. We use the
pseudo label obtained from system ID (6) to perform session-
wise SSA for ASR back-ends 1, 2, and 4. SSA improves ASR
by about 1%. Finally, the combinations of these models achieve
a WER of 19.2 %. We submitted system (11), which achieves a
relative WER reduction over the baseline of 32.6 %.

Table 6 shows the ASR results for the evaluation set of
the sub-track using Oracle diarization. Our proposed system
achieves a relative WER improvement of 38.6 % over the base-
line.

5. Overall results for main track
Table 7 compares the results of the baseline and our pipeline on
the main track for the dev and eval sets. We submitted system
(9), which achieves a relative WER reduction over the baseline
of 44 % and 47 % for the dev and eval sets, respectively. Our
system ranked third in terms of Macro WER on the eval set and
second on the Mixer 6 eval set.

Table 6: DA-WER on the eval set with oracle diarization and
SE1 for far-field acoustic robustness task (sub-track1).

ID Model CHiME-6 DiPCo Mixer6 Macro

(0) Baseline 35.5 36.3 28.6 33.4

(7) ASR1+SSA 24.3 23.3 14.7 20.8
(8) ASR2+SSA 25.5 23.6 15.0 21.3
(9) ASR4+SSA 24.4 23.2 14.6 20.7

(10) (7)+(8)+(9) 24.0 22.8 14.6 20.5
(11) (10)+LM rescoring 24.0 22.8 14.6 20.5

6. Conclusion
We presented the multi-talker recognition system that we sub-
mitted to the DASR task of the CHiME-7 challenge. The sys-
tem performs diarization with EEND-VC, and recognition with
a combination of four powerful ASR systems. We exploit SSL
models in different parts of our systems to build robust systems.

There are several future work directions to improve perfor-
mance and generalization further. For diarization, we should
explore ways to improve speaker embeddings to reduce speaker
confusion when using short segments. This would allow relax-
ing the constraint of our current systems to have at most four
speakers in an 80-second segment. We would also like to ex-
plore target speaker extraction [33] that was successful in other
submissions [34]. For ASR, we would like to investigate more
diverse ASR systems such as DNN-HMM hybrid systems or
target-speaker ASR [35, 36].
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