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Abstract

This paper summarises the Cambridge team’s work in the
DASR Task of the CHiME-7 Challenge for speaker diarisation
and automatic speech recognition (ASR). For speaker diarisa-
tion, the combination of Pyannote and ECAPA-TDNN was ex-
plored. For ASR, a two-pass ASR system was built. The first-
pass model was based on a CTC model fine-tuned from a pre-
trained WavLM model, based on which test-time unsupervised
adaptation was implemented before decoded with a 4-gram lan-
guage model (LM). For the second-pass system, with WavLM-
based encoders, forward and backward hybrid CTC/attention
models, as well as a label-synchronous neural transducer model,
were trained for re-scoring. As a result of these efforts, for the
sub-track, the Cambridge system achieved 21.7% and 22.7%
DA-WER on the overall Dev and Eval sets respectively, with
24.6% and 32.0% relative error-rate reductions over the chal-
lenge baselines. For the main track, an ECAPA-based system
was used for diarisation. Using our diarisation, together with
our proposed ASR, the submitted main-track system gave a DA-
WER of 38.7% on the Eval set which is with a 30% relative
reduction in error rate compared to the challenge baseline.
Index Terms: speech recognition, speaker diarisation

1. Introduction
The Cambridge entry for the DASR Task of the CHiME-7 Chal-
lenge [1] is presented in this paper. The DASR Task is divided
into a sub-track and a main track. For the sub-track, the or-
acle diarisation/segmentation is provided, based on which an
ASR system needs to be run. However, for the main track no
pre-defined segmentation is provided and therefore diarisation
needs to be performed. This paper describes our contributions
in both ASR and diarisation to both tracks.

This paper describes a two-pass ASR system which was
implemented based on end-to-end (E2E) trainable models. A
first-pass ASR model was built using WavLM [2] and Con-
nectionist Temporal Classification (CTC) [3] and was decoded
with a 4-gram language model (LM). In addition, unsuper-
vised test-time adaptation [4] was used to improve the recog-
nition performance. For the second-pass re-scoring system,
the model combination is employed, including forward and
backward CTC/attention joint [5] models, as well as a label-
synchronous neural transducer (LS-Transducer) [6]. A speaker
diarisation system is also built for the main track, which em-
ploys an ECAPA-TDNN to extract speaker embeddings with
automatic channel selections and combines multiple diarisation
outputs using DOVER-Lap [7].
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2. Sub-Track: Speech Recognition only
This section describes the ASR methods and models used in
our submitted systems. For the sub-track, oracle diarisation is
used. For front-end processing, including channel selection [8]
and GPU-accelerated GSS [9], exactly the same methods used
in the baseline system [1] were used.

2.1. ASR Model Training

The systems developed followed the baseline system to pre-
process the data, including the division of training and Dev sets,
data augmentation with room impulse responses and noises, and
speed perturbation.

2.1.1. WavLM-based CTC model

A CTC model was fine-tuned from a WavLM Large model [2]
for the first pass and English characters were employed as the
modelling unit. Note the WavLM model enables a mask opera-
tion which functions as SpecAugment [10] during training.

2.1.2. Hybrid CTC/attention model with WavLM encoder

A hybrid CTC/attention model was built for the second-pass re-
scoring. In contrast to the baseline model [1], which regards
WavLM as a feature extractor, our model directly employed
WavLM as the encoder whose parameters can be updated during
training. Similar to the CTC model, the WavLM encoder has an
implicit SpecAugment operation, therefore separate SpecAug-
ment was not used.

In preliminary experiments, when using 50 BPE modelling
units, it was found that the WER result on the Dev set from CTC
greedy search or attention-based decoder with teacher forcing
was much lower than when using 500 BPE units. Interestingly,
when using CTC/attention joint decoding during inference, the
model with 500 BPE units performed better, this is because the
sequence is much longer when using 50 BPE units, and the error
accumulates along the prediction. In our two-pass ASR system,
the CTC/attention model was targeted at re-scoring, which al-
ready has complete hypotheses from the first-pass CTC model,
therefore, 50 BPE units were chosen as the modelling units.

2.1.3. Backward hybrid CTC/attention model

During re-scoring, to get richer information, we also built a
backward CTC/attention model, which had a right-to-left de-
coder to utilise future information during re-scoring. Other
details were the same as the normal (forward) CTC/attention
model.

2.1.4. Label-synchronous neural transducer (LS-Transducer)

To further increase the model diversity used by the re-scoring
system, an LS-Transducer [6] model, which is a streamable on-
line model, was also implemented for re-scoring. In this case,



the offline WavLM encoder and 50 BPE units were employed,
and other details followed [6]. Hence, our re-scoring system
included different types of model, including forward and back-
ward, offline and online.

2.2. ASR model decoding

Before ASR decoding, the CTC-based first-pass model first per-
formed unsupervised test-time adaptation [4], which was an
utterance-level adaptation and therefore was independent for
each session. Then, the lexicon-based decoding was performed
and N -best lists (N was set to 600) were saved for subsequent
re-scoring.

2.2.1. Unsupervised test-time adaptation

The unsupervised test-time adaptation method proposed by [4]
was implemented for the first-pass CTC model. Without ac-
cess to labelled data during decoding, an unsupervised entropy-
based loss function was used for adaptation, which sharpens
class distributions via Entropy Minimisation (EM). Since the
CTC blank token dominates the class distribution in L encoder
output frames, the frames where the blank token yields the high-
est probability were excluded to mitigate the class-imbalance
issue. Denote the vocabulary size as V , the objective Lem can
be calculated as

Lem = − 1

L

L∑
i=1

V∑
j=1

Pij logPij (1)

where Pij is the probability of the j-th class in the i-th frame.
Note that this test-time adaptation was at the utterance-level fol-
lowing [4], which was of course independent for each session.

2.2.2. First-pass decoding

During the first-pass decoding, a 4-gram LM that was gener-
ated from the training set transcription was used. In addition, a
lexicon was also generated from the training set transcription,
considering the 4-gram LM was word-level and the ASR mod-
elling unit of CTC was English characters. Therefore, the lex-
icon mapped the word to the corresponding characters. The
output N -best list was saved for the following re-scoring.

2.2.3. Second-pass decoding

After the first-pass decoding, the N -best lists were used for re-
scoring. As mentioned, three different models were used for
re-scoring, during which the hypotheses in the N -best list were
fed into the three models to get their corresponding scores for
each hypothesis. Suppose Sctc is the score obtained from the
original first-pass CTC model, Saed is the score from the de-
coder of hybrid CTC/attention model, Sb-aed is the score from
the decoder of backward CTC/attention model, and Sls-t is the
score from the LS-Transducer, the final score Sfinal of a hypoth-
esis is computed as:

Sfinal = Sctc + αSaed + βSb-aed + γSls-t (2)

where α, β, and γ are the coefficients for the three second-pass
models. Inspired by [11, 12], the three interpolation coefficients
were obtained by employing the covariance matrix adaptation
evolution strategy (CMA-ES) [13, 14] as a black-box optimisa-
tion algorithm to minimise the WER on the Dev set.

3. Main Track: Diarisation and ASR
Our pipeline system for the main track consists of a diarisa-
tion system and a downstream ASR system, which has been
described in the previous section. In this section, the details of
our speaker diarisation system are presented.

3.1. Speaker Diarisation

Multi-channel weighted prediction error (WPE) dereverbera-
tion was applied to every channel of all corpora. No additional
audio processing was performed.

3.1.1. System Description

We use the provided Pyannote [15] baseline diarisation,
ECAPA-TDNN [16] and DOVER-Lap [7] in our diarisation
system. The baseline diarisation system was utilised to identify
the channel exhibiting the most speech activity within a fixed-
length window (5 seconds). This information is then used to
give a best channel prediction for each final speech segment
of the baseline system. Since each speech segment can con-
tain multiple 5-second windows, and the baseline system typ-
ically chooses different channels for each window, we sample
a channel based on the distribution of the best channels across
all included windows. We sample three times for each dataset
and employ ECAPA-TDNN to extract speaker embeddings and
then perform clustering-based diarisation on each of these three
groups of chosen channels. These diarisaton results, along with
supplied baseline diarisation output are then combined using
DOVER-Lap.

4. Experimental Results
The following subsections first give the results on the sub-track
and then the main track.

Table 1: Sub-track: %DA-WER results with oracle diarisation
on CHiME7 Dev sets, which contains Chime6 Dev, Dipco Dev,
and Mixer6 Dev sets.

ASR Model Chime6 Dipco Mixer6 Overall Dev
Baseline 32.6 33.5 20.2 28.8
Whisper 30.9 34.5 21.2 28.8
Our ASR 22.8 28.5 13.8 21.7

w/o Re-score 23.3 29.0 14.2 22.2
w/o TTA 24.1 31.4 14.8 23.4

Table 2: Sub-track: %DA-WER results with oracle diarisa-
tion on CHiME7 Eval sets, which contains Chime6 Eval, Dipco
Eval, and Mixer6 Eval sets.

ASR Model Chime6 Dipco Mixer6 Overall Eval
Baseline 35.5 36.3 28.6 33.4
Whisper 36.6 35.7 25.2 32.5
Our ASR 26.2 25.1 16.8 22.7

w/o Re-score 26.8 25.4 17.0 23.1
w/o TTA 27.4 28.0 21.0 25.5

4.1. Results on the Sub-track

The results of our two-pass ASR system on Chime7 Dev and
Eval sets for the sub-track are shown in Tables 1 and 2, which



Table 3: Main track: %DER results with the submitted diari-
sation system on CHiME7 Dev sets, Chime6 (F) uses forced-
aligned as the scoring reference.

Model Chime6 Chime6 (F) Dipco Mixer6
Baseline 40.0 39.0 29.9 16.6
Ours 39.0 30.5 29.4 17.5

Table 4: Main track: %DER results with the submitted diarisa-
tion system on CHiME7 Eval sets.

Model Chime6 Dipco Mixer6
Baseline 56.3 27.9 9.3
Ours 48.2 25.6 10.3

Table 5: Main track: %DA-WER results with speaker diarisa-
tion on Chime7 Dev sets. SD denotes speaker diarisation.

ASR SD Chime6 Dipco Mixer6 Overall Dev

Baseline Baseline 62.4 56.6 22.5 47.2

Our ASR Baseline 52.5 48.3 17.7 39.5

Our ASR Our Diar 44.4 45.8 20.5 36.9

Table 6: Main track: %DA-WER results with speaker diarisa-
tion on Chime7 Eval sets. SD denotes speaker diarisation.

ASR SD Chime6 Dipco Mixer6 Overall Eval

Baseline Baseline 77.4 54.7 33.7 55.3

Our ASR Baseline 70.1 40.8 19.4 43.4

Our ASR Our Diar 56.1 36.8 23.1 38.7

shows that our two-pass ASR system greatly outperformed the
baseline and Whisper on the sub-track, with 24.6% and 32.0%
relative reduction in DA-WER. In addition, the test-time adap-
tation (TTA) technique was shown to be very effective for ASR,
especially on the Eval set with 9.4% relative reduction in DA-
WER. However, TTA made the CTC model overconfident, re-
sulting in only about 0.5 % absolute DA-WER reduction even
if a strong re-scoring system was built.

4.2. Results on the Main-track

Table 3 shows the DERs on different sub-sets of the Dev set.
With the manual reference, our diarisation approach only gave
less than 1% absolute reduction on the Chime6 and Dipco sub-
sets. However, with the force-aligned reference, there is more
than 8% absolute reduction on the Chime6 Dev sub-set. The
DA-WER results are listed in Tables 5 and 6, in which our over-
all system, including speaker diarisation and ASR, gave 10.3%
and 16.6% absolute DA-WER reductions over the baseline on
the Dev and Eval sets respectively. In addition, with our ASR,
our diarisation method gave lower DA-WERs on the than the
baseline diarisation by 2.6% (Dev) and 4.7% (Eval) absolute.

4.3. DER investigation

From the DER results in both Tables 3 and 4, there was an im-
provement relative to the baseline only in the Chime6 and Dipco
subsets only, whereas the DERs for Mixer6 show an increase in
both the Dev and Eval sets. Therefore, we looked at breakdown
of DERs to gain a better understanding of the underlying rea-
sons for this phenomenon. From Table 7 it can be seen that our
improved diarisation was mostly due to the reduction in SER.

Table 7: %DER breakdowns on CHiME7 Dev sub-sets. Chime6
(F) uses the forced-aligned reference. The three components
of DER are % missed speech (MS), % false alarm (FA) and %
speaker error rate (SER).

Model Data MS FA SER

Baseline

Chime6 22.3 3.2 14.5
Chime6 (F) 9.5 11.3 18.2

Dipco 12.0 4.8 13.0
Mixer6 13.8 1.0 1.7

Ours

Chime6 32.8 1.7 4.5
Chime6 (F) 16.4 7.3 6.7

Dipco 17.9 2.8 8.8
Mixer6 15.0 0.7 1.8

Specifically, the Chime6 SER decreases from 14.5% to 4.5%
with the manual scoring reference and from 18.2% to 6.7% with
the force-aligned reference.

However, although the reduction in SER indicates the qual-
ity of speaker embeddings improves after using ECAPA, there
is a significant increase in missed speech (MS). This is because
the ECAPA pipeline assumes there is no overlap in the data.
Even though we have used DOVER-Lap to combine the vari-
ous ECAPA outputs results with the baseline that does considers
overlaps, the issue of MS remains a significant challenge.

5. Future Work
This section discusses potential future improvements for our
current setup. One improvement would involve developing a
more effective method for selecting channels, and the other one
is to take into account overlapping data. In order to improve
the channel selection method, we developed a way to find the
“ideal” single-best channel selection in order to measure the
performance of channel selection techniques. The aim is to
establish a lower bound for DER in future work by utilising
perfect VAD and knowing the ideal channel selection for our
ECAPA-based system.

5.1. Channel Selection

Apart from the Chime6 Dev subset, where the reference device
is available for all sessions, the reference channel is not pro-
vided for other subsets. To assess the impact of optimal chan-
nel selection on our diarisation system, we employ oracle ut-
terance segmentation with a simplified ASR system and mea-
sure the WER of each segment. This simplified one-pass ASR
uses greedy decoding and is applied for all channels for all ut-
terances and chooses the channel for each utterance yields the
lowest WER. The WERs from different channel selection meth-
ods are presented in Table 8 where it can be seen that random
selection yields the poorest results, as anticipated. The GSS
method gives the the same input to the ASR as the provided
CHiME7 baseline.1 The final two lines demonstrate that using
just one top-performing channel, without any beamforming, can
achieve better results than GSS.

1With the simplified ASR, the error rate is, as expected, lower than
the baseline. The comparison of the simplified ASR system and the
submitted one can be found by comparing the error rates from the GSS
lines of Table 8 and the sub-track values in Tables 1 and 2.



Table 8: %WER with different channel selection method on Dev
sets, using the simplified ASR. ‘Random’ selects a single chan-
nel randomly; ‘GSS’ is the same as the input from the baseline.
‘Best’ selects the single channel that gives the lowest WER for
an utterance.

Method Partition Chime6 Dipco Mixer6

Random
Dev 52.3 65.2 36.1
Eval 51.3 68.2 36.3

GSS
Dev 31.9 44.6 19.7
Eval 33.5 47.0 29.7

Best
Dev 30.5 40.4 18.6
Eval 27.3 43.1 13.2

Table 9: %DER with different pre-processing merging methods
with oracle speech regions and best channel assignment

Merging Method Data Dev Eval

All

Chime6 36.8 36.9
Chime6 (F) 27.8 -

Dipco 22.4 20.6
Mixer6 17.1 11.9

Channel-mediated

Chime6 27.7 31.4
Chime6 (F) 24.2 -

Dipco 18.5 17.1
Mixer6 11.9 6.0

5.2. Overlap Considerations

As demonstrated above, most errors when using ECAPA result
from the assumption that there are no overlap in the data. The
pipeline merges all overlapped regions into a single stream dur-
ing the pre-processing step. In the previous experiments, when
overlapped speech regions are assigned with different channels,
we just use the first channel and merge those regions. Now in-
stead we only combine overlapped regions with the same chan-
nel, and treat them as a separate stream when they have dif-
ferent channel assignments. We refer this merging method as
channel-mediated method. Table 9 shows that when using the
oracle speech regions from the reference, together with the best
(using the simplified ASR WER) channel information obtained
from the previous steps, the DER is much better when using
the channel-mediated method, which has a relative reduction
of 24% and 21% in overall DER on the Dev and Eval sets re-
spectively. It is worth mentioning that since the oracle speech
regions are used so there is no false alarm in both cases, the
DER reductions only come from MS and SER. The DER val-
ues for the overlap can be considered as the lower bound for
the DER that the ECAPA system can achieve without applying
any beamforming techniques on the audio. It is expected that
further improvements may be achieved by combining multiple
channels or using a diarisation system that does not solely rely
on ECAPA.

6. Conclusion
This paper summarises the Cambridge entry for the CHiME-7
Challenge DASR Task. For the sub-track, a two-pass ASR sys-
tem was implemented while exploring the use of self-supervised
pre-trained models (i.e. WavLM) in both frame-synchronous
(i.e. CTC) and label-synchronous models. In addition, model
combination was explored to boost the performance of second-

pass re-scoring. For the main track, we used combination of
Pyannote and ECAPA TDNN with DOVER-Lap to perform
speaker diarisation on overlapped speech. Experiments showed
that our system gave reduced DA-WER compared to the chal-
lenge baseline, with 32% and 30% relative reduction on the
overall Eval set for the sub and main tracks. For future work,
we establish a performance goal for a single-channel ECAPA-
based diarisation system without using beamforming.
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