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Abstract
This submission for the CHiME-7 DASR challenge consists of
a TS-VAD system for diarization followed by a GSS system
for source extraction. Then, a segment-level refinement is ap-
plied to the enhanced audio segments, before using the baseline
ASR system for transcribing the audio. As initialization for the
TS-VAD, the baseline diarization system was used to identify
single-speaker regions that are used to extract enrollment em-
beddings for each speaker in a meeting. The TS-VAD system is
applied on each microphone channel independently, and the soft
estimates at the TS-VAD output are averaged across the micro-
phones, before converting them to hard estimates, i.e., the di-
arization estimates Additionally, we analyzed the estimates and
found many speaker swaps and less ideal segments. To address
them, we propose a simple post-processing step by comparing
speaker embeddings from the baseline diarization, i.e., the en-
rollment embeddings, with speaker embeddings derived from
the enhanced data. Through the usage of TS-VAD, we improve
upon the baseline word error rate on the CHiME-6 dataset by
3.6 percentage points, whereas the postprocessing results in an
additional consistent word error rate improvement of 2 % to 4 %
absolute.
Index Terms: speech recognition, meeting transcription

1. Introduction
The transcription of natural conversations in domestic envi-
ronments is a challenging task addressing all common speech
processing modules ranging from diarization over speech en-
hancement and automatic speech transcription. In addition, dis-
tributed settings require an effective channel/array selection or
fusion. Over the last iterations of the CHiME challenge [1–3],
diarization, i.e., the task of determining who spoke when, has
become increasingly important for the construction of effective
meeting transcription systems. During the 5th CHiME chal-
lenge [1], the human annotations were available as external di-
arization. Here, it was shown that using the speaker activity
as a guide for source separation [4] leads to a robust and ef-
fective speech enhancement that does not require training data.
Subsequently, the 6th iteration of CHiME [2] made use of this
Guided Source Separation (GSS) [4] in the baseline system and
prohibited the usage of the human annotations in a new track.
Therefore, inferring an effective diarization from the meeting
data became imperative to achieve good results. However, clas-
sical diarization pipelines could not cope well with the dynamic
conditions of the CHiME meetings, especially for regions of
overlapping speech, so no effective guide could be provided by
these systems. Here, the newly proposed TS-VAD [5] was able
to alleviate these issues and obtain impressive results by per-
forming a diarization refinement using these classical, speaker
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Figure 1: System overview for the complete processing pipeline.

embedding-based diarization pipelines as initialization. First, a
speaker embedding-based diarization pipeline was used to ob-
tain an initial diarization estimate. Then, i-Vectors [6] were
extracted from the regions attributed to each speaker to ob-
tain speaker representatives. The TS-VAD system itself then
performs a frame-wise classification for each time frame and
speaker using the speaker representatives as auxiliary informa-
tion. While modern neural network-based speaker embeddings
such as d-Vectors and x-Vectors [7, 8] significantly outperform
i-Vectors [9] in terms of the quality of the speaker representa-
tions, the original TS-VAD was unable to make use of this infor-
mation. This drawback was addressed in [10] for the VoxSRC
diarization challenge [11]. However, here only small segments
containing two speakers at most were processed by the TS-
VAD in order to perform a refinement of overlapping speech
for single-channel audio data.

In this submission, we only address the diarization task of
the CHiME-7 scenario [3] and implement a d-Vector-based TS-
VAD for the diarization of the CHiME-7 scenarios to achieve
robust diarization results on all subsets of the CHiME-7 data.
In addition, we present post-processing steps to combine mul-
tiple microphone channels and refine the diarization estimates
of the TS-VAD. First, a channel fusion using the soft-decision
labels of the neural network, i.e. the TS-VAD, is performed
to obtain a channel-independent diarization estimate. Then,
these diarization estimates are used as a guide for a GSS sys-
tem [4]. Since the enhanced segments after GSS might still
be corrupted or assigned to the wrong speaker, we propose an
additional segment-level refinement that uses segment-level d-
Vectors to mitigate these errors. We are able to show that both
the CHiME-7 diarization and our proposed diarization pipeline
benefit from these postprocessing steps. Here, while maintain-
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Figure 2: Illustration of the TS-VAD module

ing the baseline ASR system, the WER is improved by 1 % to
3 % absolute through the diarization postprocessing steps alone.
By replacing the diarization model with a stronger TS-VAD-
based diarization, the WER is then further improved.

This work is structured as follows: First, the complete sys-
tem structure and its added components are described in Sec-
tion 2. Then, the impact of the modified diarization components
and diarization refinement steps on the system performance is
investigated in Section 3. Section 4 then shows the final results
of our submitted system. We finish this report with a conclusion
in Section 5.

2. System Description
The system is a combination of the baseline diarization system,
TS-VAD [5], channel fusion, GSS [4], segment-level refine-
ment, and the baseline Automatic Speech Recogniton (ASR)
as visualized in Fig. 1.

2.1. TS-VAD

Our implementation from [12] was used as a starting point for
the TS-VAD component. The main idea of TS-VAD is to per-
form a personal Voice Activity Detection (VAD) [13] simulta-
neously for all active speakers in a meeting. In order to do this,
enrollment speaker embeddings are used as auxiliary informa-
tion to re-identify each speaker. The TS-VAD architecture is
split into three parts: a general feature encoder, a speaker-biased
module, and lastly a combination layer. The feature encoder
only uses the observation as input. Then, the enrollment em-
bedding of one speaker is concatenated to the feature encoder
output and fed through the speaker-biased module. This is done
for each of the K speakers in a meeting independently to obtain
K outputs. These are then concatenated and processed by the
combination layer to obtain the diarization estimates for all K
speaker simultaneously. A visualization of this processing is in
Fig. 2. We use TS-VAD with the observation from one micro-
phone at the input. To process multiple microphones, TS-VAD
is applied independently to each microphone, as indicated in
Fig. 1.

2.1.1. Enrollment embedding: d-Vector

As enrollment embeddings for the TS-VAD, we used d-Vectors
instead of i-Vectors as it was done in [5,12,14]. The main reason
for this decision is the embeddings’ generalizability to different
domains. In [12] it was shown, that a domain adaptation on the
input features and the i-Vector embeddings was necessary for a
good performance. While i-Vectors need to be carefully adapted
so that the domain is not encoded in the embeddings, d-Vectors
tend to be less sensitive to these effects. Therefore, we used
the neural network-based d-Vectors as enrollments, which have
already been shown to work for a TS-VAD system deployed for
dialogue data in [10].

At training time, we estimated the enrollments by concate-
nating the non-overlapping regions per speaker and then extract-
ing a single-speaker embedding for this concatenated data. For

the CHiME-6 training data, we used the forced alignments as
speaker activity and excluded the overlap according to the hu-
man annotations. For SimLibriCSS we had only the simulation
annotations, i.e., the utterance boundaries, and used them for
both.

During inference time, the human/simulation annotations
and the forced alignment are replaced with the CHiME-7 base-
line diarization estimates. If a speaker had no non-overlapping
regions (which occurred for some Mixer 6 sessions), this
speaker was discarded entirely.

2.1.2. Backup embeddings

Since the final combination layer of TS-VAD processes all
speakers simultaneously to obtain the diarization estimates, the
total number of speakers is fixed. In order to handle scenarios
with varying numbers of speakers, [14] proposed to train the
model for the maximal number of speakers that can occur. At
test time, additional backup enrollment d-Vectors are sampled
if fewer speakers are detected in a meeting. The backups are
later removed from the TS-VAD output since it is known that
they are inactive.

In contrast to [14], we sampled the backups from the devel-
opment dataset and not from the training dataset. This is done
independently for each microphone, because then it is more
likely that the average posterior probability (see Section 2.2) is
small for the backup speakers, and they have a smaller influence
on the desired speakers.

2.2. Channel fusion

The challenge rules prohibit the usage of any prior knowledge
about the array geometry for the evaluation. This includes se-
lecting a reference or random microphone, or utilizing which
microphones belong to the same array. To address this, we ap-
plied the TS-VAD system independently to each microphone
channel. This includes the d-Vector extraction, so a slightly dif-
ferent d-Vector is used for each channel. To fuse the channels,
we tried two fusion strategies: mean fusion using the soft es-
timates, and DOVER-LAP [15] on the hard estimates. We use
here mean and not median aggregation as in [12], because it
slightly improved the Diarization Error Rate (DER) on the Dev
data.

2.3. Discretize

For the conversion of the soft estimates to hard estimates, we
used the same processing as in [12,16]: Thresholding and mor-
phological closing (dilation followed by erosion), where the
kernel size of dilation is larger to yield overestimates, see Fig. 3.

2.4. GSS

For the source extraction, we used GSS from [4]. It takes the
diarization as a guide for potential speaker activity to train a
spatial mixture model [17] for each estimated segment on the
WPE [18, 19] dereverberated multi-channel observation. The
estimated time-frequency posterior is then used for mask-based
beamforming.

2.5. Segment-level refinement

While TS-VAD can already be interpreted as a refinement of the
baseline diarization system, we here propose a second refine-
ment stage of the diarization that tries to fix speaker confusions
and drop noisy segments after the extraction.
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Figure 3: Illustration of the diarization postprocessing steps and conversion of the soft labels to hard labels, for a section of a Mixer 6
session with mean channel fusion.

Algorithm 1 d-Vector-based Segment Refinement
dm,k . . . d-Vector from concatenated overlap-free speaker
regions of the observation for speaker k on mic m

d̂b . . . d-Vector of enhanced speech with target speaker k̂b in
segment b
Tb . . . Length of segment b
for each b do ▷ for each segment

for each m and k do ▷ for each mic and spk
▷ cosine distance

cb,m,k = 1−
dT
m,kd̂b

∥dm,k∥∥d̂b∥
∈ [0, 1]

k̃ ← argmin
k ̸=k̂b

{
mean

m
{cb,m,k}

}
▷ candidate spk label

if min
m

{
cb,m,k̂b

}
− 0.05 >mean

m

{
cb,m,k̃

}
then

if mean
m

{
cb,m,k̃

}
> 0.6 then

▷ assume inactivity, e.g., GSS removed speech
Drop segment b

else
k̂b ← k̃ ▷ change speaker label of the segment

else
Keep k̂b as estimated speaker for the segment b

Tk =
∑
b

{
Tb if k = k̂b,

0 otherwise.

for each k̂ do ▷ for each spk
if Tk/T

Recording duration < 3% then
▷ assume inactivity, e.g., speaker counting error

Remove speaker k

First, speaker embeddings are extracted for each enhanced
segment with the d-Vector system. Then, the pairwise similar-
ities are computed between all segment-level embeddings and
all enrollment embeddings, which were also used for TS-VAD.
If the difference between the estimated speaker and another
speaker exceeds a margin of 0.05, the segment’s speaker label
is changed. In order to favor the original diarization decision
made by the TS-VAD, we used the minimum cosine distance
for the speaker that was estimated to be active and the mean
cosine distance for all other speakers. If a segment’s label is
changed and, additionally, no distance is smaller than 0.6, the
segment is dropped completely from further evaluation.

After this label correction, speakers with a relative speaker
activity of less than 3 % over the course of the meeting are omit-

ted entirely, since they are assumed to stem from errors in the
speaker counting. The algorithm is shown in Algorithm 1.

3. Experiments
3.1. TS-VAD

For the training of TS-VAD, we used the data from
https://github.com/jsalt2020-asrdiar/
jsalt2020_simulate, which we call SimLibriCSS, and
the CHiME-6 training data. We fixed the number of speakers
to 4 for SimLibriCSS to match the upper bound of CHiME-7.
We augmented the SimLibriCSS data with noise-only regions
extracted from the CHiME-6 training data in a similar way as
in the CHiME-6 Kaldi recipe [2].

As input features, we used the concatenation of MFCCs and
the logarithm of the spectrum plus one (log(1 + Spectrum)).
After concatenation, we normalized each frame to zero mean
and unit variance, which could be interpreted as instance nor-
malization [20]. For the training, we used a minibatch size of
3.7 hours (448 sections of 30 second duration) and ADAM [21]
with a learning rate of 0.001.

3.2. Embedding extractor: d-Vector system

Enrollment and segment-level embeddings are extracted with
the d-Vector system from [22]. The d-Vector extractor is a
ResNet34-based system trained on VoxCeleb [23] with MU-
SAN [24] noise as data augmentation and simulated room im-
pulse responses. For training, the AAM-Softmax loss [25] is
used. These 256-dimensional speaker embeddings are used
both for extraction of enrollment embeddings for the TS-VAD
and to realign speaker segments during the segment refinement.
A projection layer is added to TS-VAD that reduces the em-
bedding dimension from 256 to 100 to match the size of the
commonly used i-Vectors.

3.3. Word error rates

For the evaluation, we used the Concatenated minimum-
Permutation WER (cpWER) [2], Time-Constrained minimum-
Permutation WER (tcpWER) [26] and diarization-attributed
WER (DA-WER) [3]. The cpWER was used in the previous
CHiME challenge and the DA-WER was used for ranking in
this challenge. The difference between both metrics lies in
the permutation between reference and estimate. The cpWER
chooses the permutation that minimizes WER whereas the DA-
WER minimizes the Diarization Error Rate (DER) [27]. On the



Table 1: Comparison of soft-label (Mean) and hard-label
(DOVER-Lap) fusion on the CHiME-6 Dev dataset

Mean Dover-Lap

DER cpWER DER cpWER

41.09 58.66 39.80 61.44

CHiME-7 data, we never observed a difference between both
metrics, hence we evaluated our system components with the
well-known cpWER. The tcpWER is an upper bound of the
cpWER and prohibits correct matches and substitutions in the
Levenshtein distance if the words are too far apart from each
other. As a maximal temporal distance, we chose a collar of 5 s.

3.4. Effect of channel fusion

Table 1 shows the difference in fusing all channels based on the
hard decision labels and based on soft labels. For the hard la-
bels, a diarization output is obtained per channel and then all
channels are fused with DOVER-Lap [15]. Due to complex-
ity reasons, the Dover-Lap algorithm is applied in two stages.
For soft-label fusion, the mean of the TS-VAD outputs for all
microphones are taken and then converted into a single diariza-
tion estimate. Interestingly, DOVER-Lap performs better for
the DER, but worse in terms of cpWER. Therefore, we used the
simpler, and computationally less demanding fusion by taking
the average of all soft labels.

3.5. Impact of speaker confusions

In order to assess the influence that wrong speaker assignments
have on the cpWER, a lower bound is obtained by relabeling
the segments with oracle speaker labels. The oracle speaker
labels are chosen such that they minimize the cpWER and are
obtained with the ORC-WER algorithm [28,29], where the roles
of reference and hypothesis are swapped [12].

Table 2 depicts the cpWER and tcpWER for the estimated
labels and the oracle labels for both the baseline system and our
TS-VAD pipeline. For the cpWER the gap to the oracle labeling
is larger than for tcpWER since the oracle labeling is chosen to
minimize the cpWER, which yields overoptimistic results due
to temporally irrational alignments. This large gap, often bigger
than 10 % absolute, motivated us to try correcting mislabeled
segments with the proposed segment-level refinement described
in Section 2.5.

While this refinement does not close the gap, it yields a con-
sistent improvement across all datasets in both metrics for our
system and the baseline. On the TS-VAD estimates, we sep-
arately investigated the effect of dropping uncertain segments
and segment relabelling. Both techniques have a positive ef-
fect when used individually, but a combination led to the best
performance.

3.6. System fusion

For the system fusion, we again used the soft label fusion to
combine multiple TS-VAD systems. In addition to fusing all
microphones of a single model, they are averaged over multiple
systems. First, we tried 3 different checkpoints of one train-
ing configuration: Checkpoints after 4000, 11 000, and 25 000
training steps. Since we noticed that the TS-VAD is overfit-
ting to the CHiME-6 training data, this was aimed at stabilizing
the system performance. Here, one checkpoint was the best ac-
cording to the validation training loss, while another came from
an earlier and the third from a later stage of the training, i.e.,
where the system already started overfitting to the training data.
For this combination, we already saw a significant gain and
hence tried to combine them with four additional systems: One
additional checkpoint of our best system configuration (15 000
training steps) and additionally one checkpoint from a TS-VAD
system without the embedding projection of the d-Vectors, and
two checkpoints from a TS-VAD model, where the SNR of the
CHiME-6 noise in the SimLibriCSS data was reduced.

Table 2: cpWER and tcpWER on the Dev datasets for different model configurations

System
cpWER tcpWER

CHiME-6 DiPCo Mixer 6 CHiME-6 DiPCo Mixer 6

Baseline 62.25 58.16 22.53 66.45 62.86 22.96
+ Segment refinement (relabel + drop) 59.82 57.03 22.24 63.56 61.12 22.66
+ Oracle segment labeling 51.06 45.76 20.95 57.09 52.27 21.55

TS-VAD→ GSS 58.66 58.89 21.93 61.89 63.03 22.49
+ Segment drop 56.52 58.53 21.58 59.73 62.29 22.11
+ Segment relabel 56.75 57.68 21.18 61.27 62.29 21.75

+ Segment drop 54.79 57.52 20.94 59.02 61.83 21.49
+ Oracle segment labeling 44.78 46.46 19.72 52.88 53.50 20.61

3 System combination 56.94 56.86 21.11 59.85 60.12 21.69
+ Segment refinement (relabel + drop) 52.86 55.97 20.48 56.61 59.32 21.05

7 System combination 54.30 55.67 20.76 57.34 58.41 21.28
+ Segment refinement (relabel + drop) 51.12 54.31 20.15 55.01 57.28 20.68

+ Remove inactive speakers 51.12 54.31 19.98 55.01 57.28 20.51
+ Oracle segment labeling 41.63 45.93 18.92 49.35 51.87 19.73



Table 3: Evaluation metrics of the submitted system1

Scenario
DER JER DA-WER

Dev Eval Dev Eval Dev Eval

CHiME-6 36.27 58.72 37.43 56.47 51.14 72.90
DiPCo 36.01 29.98 39.73 39.68 54.31 48.27
Mixer 6 15.51 12.40 18.61 11.51 19.98 25.79

Macro 29.27 33.70 31.92 35.89 41.81 48.99

4. Submitted System
The fusion of all 7 TS-VAD system estimates was used for
our submission to the CHiME-7 DASR challenge, see Table 3.
Here, while using the baseline system and only refining the di-
arization estimate, significant improvements are achieved over
the baseline system for all three subsets of the CHiME-7 chal-
lenge data. Since only CHiME-6 and LibriSpeech-based data
was used for the training of TS-VAD, the absolute improve-
ment is highest for the CHiME dataset with 11.1 % and slightly
worse for the DiPCo data on the Dev data. Still, even without
using any matching training data, a gain of 3.7 % and 2.5 % is
achieved on DiPCo and Mixer 6, respectively. When taking into
account the already good baseline performance on Mixer 6, the
relative improvement is of the same magnitude as for CHiME
data.

5. Conclusion
For the 7th CHiME challenge, we implemented a simple yet
effective postprocessing for diarization systems. Here, we first
adapted the TS-VAD system to use neural speaker embeddings
and handle different scenarios as well as different numbers of
active speakers. We were able to show that a simple soft-label
channel fusion allows ignoring outliers in the diarization esti-
mates and using an additional d-Vector-based consistency check
to realign enhanced speech segments to the correct speaker or
remove incomprehensible segments led to further improvement.
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