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Abstract
In this work, we present our joint efforts on Track 2 of the
CHiME-6 challenge, where a transcription of a dinner party
is to be done on 2 to 3 hour sessions without the use of start
and end time annotations for each utterance during evaluation.
The first contribution follows the challenge guidelines and com-
bines our system presented during the last challenge [1] with the
Track 2 baseline diarization system [2]. Different acoustic mod-
els (AMs) with system combination are tested on the enhanced
data. The second contribution violates the challenge rules but
allows an outlook on a system which may achieve strong results
if the oracle component is replaced in the future.
Index Terms: speaker diarization, speech recognition, permu-
tation invariant training

1. Guided Source Separation
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Figure 1: Blockdiagram of the GSS system introduced during
the CHiME-5 challenge.

The enhancement system presented in [1] relies on the human
annotations of start and end times for each speaker that are not
allowed to be used during Track 2 of the CHiME-6 challenge.
However, the system can still be applied under the new chal-
lenge rules if the annotation information is replaced with the
output of a diarization system as shown in Fig. 1 1

2. Acoustic model
The baseline acoustic model (AM0) provided by the challenge
has a 15-layer factorized time delay neural network (TDNNF)
topology and is trained using a combination of 40-dim MFCCs
and 100-dim i-vectors. Training data is formed of unprocessed
and artificially reverberated speech. We have tested five addi-
tional HMM-DNN AMs consisting of combinations of convo-
lutional neural networks (CNNs) with or without residual con-
nections and TDNNFs, as follows. AM1, AM2 and AM3 use
10 CNN layers followed by 9 TDNNF layers, while AM4 and

1After the challenge we will publish the modification for the GSS
system on https://github.com/fgnt/pb chime5.

AM5 use 40 RESNET CNN layers. AM1 is trained using un-
processed worn and WPE processed array data, AM2 is trained
using unprocessed worn and GSS processed array data, and
AM3 applies discriminative training (DT) on top AM2. AM4

is trained on the same data as AM2 but uses a RESNET archi-
tecture, and AM5 is based on AM4 with DT. Both the baseline
3-gram language model (LM) provided with the challenge and
an RNN LM composed of 3 TDNN and 2 LSTM layers were
used for scoring.

Table 1: DEV (EVAL) ASR results for Track 2 using baseline
diarization system.

Enh. in test ASR WER (%)
3G-LM RNN-LM

WPE+BFIt AM0 81.92 (76.37) -

GSS

AM0 78.12 (73.06) 77.71 (72.47)
AM1 76.44 (72.04) 75.93 (70.80)
AM2 74.74 (71.27) 74.15 (70.42)
AM3 74.67 (70.55) 74.23 (70.07)
AM4 74.05 (70.47) 73.79 (70.05)
AM5 74.73 (70.14) 74.42 (69.64)

AM0−5 73.50 (68.96) 73.05 (68.45)

Table 2: Submitted results

Development set Evaluation set
DER JER WER DER JER WER

Cat. A 62.61 70.95 73.50 66.93 71.44 68.96
Cat. B 62.61 70.95 73.05 66.93 71.44 68.45

3. Experiments
Results of ASR experiments using the baseline diarization sys-
tem provided by the challenge are depicted in Table 1 for the
development (DEV) and evaluation (EVAL) sets. The perfor-
mance with in-house retrained version of AM0 is also provided.
Test data for AM0 were processed using WPE (over the com-
plete session) followed by BeamformIt. Applying GSS on the
test data (with input from the diarization system instead of hu-
man annotations) yields a significant gain in accuracy as shown
in Table 1. A further WER improvement is achieved by com-
bining the lattices of systems 0 to 5, for both the 3G and RNN
LMs.



4. PIT Neural Speaker Diarization
An alternative approach to the baseline diarization system [2]
is to formulate the diarization problem as a multi-class labeling
problem, as proposed in [3]. This is particularly interesting in
the context of CHiME-6, because this Neural Speaker Diariza-
tion (NSD) naturally handles overlapped speech and because in
CHiME-6 the total number of speakers (4) is fixed and known
in advance. This single system replaces the speech activity de-
tector (SAD) estimator, the speaker embedding calculation and
the clustering of the baseline diarization system.

For each speaker the start and end times of an utterance (or
word) have to be derived from the estimated speech presence
probability. In [3] this was solved with a threshold and a median
filter. Here, a simple Viterbi decoding on an HMM as used in
the SAD baseline system is applied independently to the speech
presence probability of each speaker to obtain the start and end
times.

To train the Neural Network (NN) we use a permutation in-
variant training (PIT) objective [4, 5], i.e., compute the loss for
each permutation of target speaker activity label and network
output, and back propagate the minimum loss. In contrast to the
original PIT loss the system is not dependent on parallel data
since the targets only consist of activity information. The activ-
ity information is estimated using an acoustic model to calculate
a forced alignment for each speaker and setting the speaker to
active for all frames assigned to non-silence senones.

5. Spatial features
We trained the NSD system on the CHiME-6 data, but the di-
arization error rate (DER) on the training dataset stayed rela-
tively high, although the system was already overfitting to the
training data. The reason is that there are only 32 speakers in
the CHiME-6 training set, which is far too few to generalize
well to unseen speakers in the test set.

To improve the performance and generalizability we inves-
tigated options to add spatial information to the system. It helps
discriminating speakers, and since a spatial feature is not di-
rectly linked to a specific speaker it may also improve general-
ization for training data with a low number of speakers.

Spatial information has shown to improve the results for
source separation on various databases [6, 7]. Common features
are the inter-channel phase differences (IPD) [6]. However, the
angles between the speakers relative to the array, i.e., their spa-
tial resolution, is quite small and our preliminary experiments
showed that even some spatial mixture models had problems
utilizing the spatial information on this dataset [1]. For this rea-
son, the use of IPD features was discarded.

A spatial mixture model (SMM) [8] is an unsupervised
method for source separation and has shown to achieve strong
results as part of the Guided Source Separation (GSS) system
[1]. In this work we used the posterior probabilities of speaker
presence obtained in the E-Step of the EM algorithm of the
SMM training as additional input features to the NSD system.
To be specific, we calculated the average power across all chan-
nels and frequencies of the observation weighted with the pos-
terior mask to be used as spatial features.

One could argue that the speaker presence posteriors of the
EM algorithm applied to the SMM are already the sought-after
diarization information, but initial tests revealed that they were
too noisy and unreliable.

6. Limitations and open problems
Ideally, the NSD system should operate on the complete session
of 2 to 3 hours length to estimate the diarization information.
This is difficult, first because the memory consumption it too
high and, second, because the information about the past that
can be stored in a recurrent network node is limited. There-
fore, the session is first split in segments of fixed length. This,
however, introduces a segment permutation problem, because
the NN does not output the same speaker on the same index for
every segment. In this work, we do not address this problem
and use an oracle permutation solver instead. This is not in line
with the challenge guidelines so that the NSD system will not
be ranked. To ease the task of the (still to be developed) permu-
tation solver we used relatively large segments of 40 seconds
length.

7. Experiments
In Table 3 some experimental results with the NSD system are
shown. As network architecture either one or two BLSTM lay-
ers are used, followed by two dense layers. The input are Mel
features, on which VTLP [9] is applied during training. The
aforementioned spatial features are concatenated with the Mel
features. The output of the NSD system is used as input to the
GSS [1] followed by the baseline Automatic Speech Recogni-
tion (ASR) system.

The first line in Table 3 is the baseline2. The first NSD
system without spatial features reached 34.28% DER on the
training data and 60.09% DER on DEV+EVAL. The results in-
dicated that the model overfits to the training data without per-
fectly learning the targets. Including the spatial features from
the SMM reduces the DER to 2.52% on train and 53.75% on
DEV+EVAL. For the training data the spatial information al-
lows the system to achieve close to perfect results, but the re-
sults on DEV+EVAL are far from perfect, asking for more tech-
niques to reduce overfitting. The last line in the Table uses the
diarization provided by the challenge organizers for Track 1.
This result is included to assess how much performance is lost
by the non-perfect diarization system.

Table 3: Preview experiments with NSD supported by SMM spa-
tial features. DER is averaged across DEV and EVAL. “Old”
and “new” refers to the DER targets that changed during the
challenge.
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TRAIN DEV+EVAL DEV EVALold new

Baseline2 - - - - 60.87 64.74 77.49 71.92
2 BLSTM 80 No No 34.28 60.09 58.56 72.68 71.25
2 BLSTM 80 Yes No 2.52 53.75 68.84 70.05 69.50
2 BLSTM 80 Yes 0.25 2.79 52.71 65.80 68.65 67.43
1 BLSTM 80 Yes 0.25 5.11 50.99 66.54 65.65 66.60
1 BLSTM 24 Yes 0.25 7.03 48.89 64.65 63.82 63.47
Oracle - - - - 0 38.16 47.67 49.54
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