

Channel Selection from DNN Posterior Probability for Speech Recognition with Distributed Microphone Arrays in Everyday Environments

— CHiME-5 Challenge

Feifei Xiong, Jisi Zhang*, Bernd T. Meyer, Heidi Christensen, Jon Barker

Speech and Hearing Group (SPandH), University of Sheffield, Sheffield, UK Medical Physics and Cluster of Excellence Hearing4All, University of Oldenburg, Germany

(* supported by a PhD Scholarship support from Toshiba Ltd)

- Introduction
 - Motivation
- Proposed System
 - Channel selection
- Results
 - Separate evaluation
- Conclusions

- CHiME-5: conversational speech recognition in everyday home environments with distributed microphones/arrays
- Challenges:
 - Natural conversational speech in a dinner party scenario
 - To recognize speech from each speaker
- Tasks:
 - Single-array track: one given reference Kinect (coarsely) based on Video
 - Multiple-array track: all 6 Kinects can be exploited
 - Ranking A: frame-level tied phonetic targets and official language modeling
 - Ranking B: all other systems

Kinect's microphone configuration

- Binaural 'worn' microphones
 - Potential 'best' channel

- BeamformIt using CH1 ~ CH4
 - Slight improvement over raw channel
 - Alternatively: CH2

Baseline: LF-MMI TDNN	WER of Dev
Worn mic.	47.22
Beamformlt, ref. Kinect	80.62
CH1	80.89
CH2	80.63
CH3	80.94
CH4	80.97

Note, the audio examples in the figure are only available in the original powerpoint slides. The samples demonstrate that when speech overlaps, the perceptually dominant speaker in the mixture will vary depending on the recording device position.

 The nearer the Kinect locates to the target speaker, the more reliable the recognition is ← high SNR and low reverberation

 A large portion of overlapping speech, and the speakers in one Location typically spatially dispersed → using reference Kinect per location seems to be not enough

'dev' 'S02' 'Kitchen' 'CH1'

w SE: speech enhancement via baseline BeamformIt w/o SE: signal from CH2 is used

- Motivated by the findings in ASR system monitoring
 - Entropy of the DNN posteriors → similarity to the training data → to reflect the final ASR performance without consuming decoding

$$-\sum_{s} (P(s,t) \cdot \log_2 P(s,t))$$

Barker, Williams and Renals. "Acoustic Confidence Measures for Segmenting Broadcast News," ICSLP, 1998

Misra et al. "New entropy based combination rules in HMM/ANN multi-stream ASR," ICASSP, 2003

Wang, Li, Hermansky, Interseech 2018

• Train a DNN model only with binaural 'worn' speech signals

• Dev set (7437 utterances)

• Dev set (7437 utterances)

Utterance-based: more promising **Risk:** potential different best Kinect for different speaker

Baseline	Avg.		S02			S 09	
		Kitchen	Dinning	Living	Kitchen	Dinning	Living
Ref. Kinect	80.62	86.50	78.89	78.64	81.39	79.60	76.65
Per utterance	78.85	83.16	79.21	75.21	79.55	78.65	77.96
Per 180 seconds	79.51	84.80	79.26	76.42	80.27	79.29	76.60
STOI on Dev	76.18	76.50	78.31	72.82	78.58	77.19	76.60

Risk: potential non-accurate selection (short average window) Session: only one potential best Kinect for all 4 speakers

- Dev set (7437 utterances)
- Per utterance

Risk: potential different best Kinect for different speaker

Speaker	ref	S02 Dining 1 st best	2 nd best	Lattice Combination
P05 (f)	88.34	88.52	88.15	86.00
P06 (m)	71.00	70.16	71.07	66.09
P07 (m)	75.20	75.20	75.80	73.57
P08 (f)	90.03	93.72	90.40	90.04

Solution: to combine complementary channels

Channel Selection (Training)

- Training data selection
 - Baseline: randomly choosing 100K utterances from Kinects' signal + binaural 'worn' (L + R)
 - To rank the 6 Kinects/Channels (after BeamformIt)
 - To select 74728 utterances (1st best) + 74728 utterances (2nd best) + binaural 'worn' (L + R)

LF-MMI TDNN	Dev (ref)
Baseline (worn L R + 100K)	80.62 (+SE)
Channel selection on training (+SE + 1 st best)	79.92 (+SE)
Channel selection on training (CH2 + 1 st best)	80.35 (CH2)
Channel selection on training (+SE + 1 st best + 2 nd best)	79.42 (+SE)
Channel selection on training (CH2 + 1 st best + 2 nd best)	79.40 (CH2)
Channel selection on training (+SE + all 6 channels)	80.83 (+SE)

- Test data selection (Multiple-Array Track)
 - Ref. Kinect (Single-Array Track)
 - To rank the 6 Kinects/Channels (after BeamformIt) ← per utterance

LF-MMI TDNN	Dev	Lattice Combination	STOI-based	
Baseline (worn L R + 100K)	80.62 (ref)	Combination	best as oracle)	
+ Channel selection on test (1 st best)	78.85	77.44 (weigh $0.5.0.5$)	76.18	
+ Channel selection on test (2 nd best)	81.17	(weigii 0.3.0.3)		
Channel selection on training	79.42 (ref)		on training	
+ Channel selection on test (1 st best)	77.40	76.17	74.82	
+ Channel selection on test (2 nd best)	80.12	(weign 0.5:0.5)		

- Test data selection (Multiple-Array Track)
 - Ref. Kinect (Single-Array Track)
 - To rank the 6 Kinects/Channels (after BeamformIt) ← per utterance

	LF-MMI TDNN	Dev	Latt Con	ice nbination	STOI-based selection (1 st
Ba	arker et al. " <i>The third 'CHIME' speech sep</i>		best as oracle)		
re St	cognition challenge: Analysis and outcom beech and Language, 2017	mes," Computer		ہ gh 0.5:0.5)	70.18
Та	al et al. "An algorithm for intelligibility	prediction of ti	me-		
fr	equency weighted noisy speech," IEEE TA		on training		
(weigh 0.5:0.5)					74.82
	+ Channel selection on test (2 nd best)	80.12	(- <u>B</u>	

• Implemented in Kaldi

- 3-dimentional features: probabilities of voices, log-pitch (1.5s window), and delta-pitch
- To improve the speaker characteristics
 - I-vectors: efficient to capture speaker information
 - Pitch features: slight further improvements

LF-MMI TDNN	Dev (ref)
Baseline	80.62
- w/o I-vectors(#100)	84.09
+ I-vectors(#100) + Pitch(#3)	80.36

- Integrate 3 LSTM projected layers into TDNN in Kaldi
 - 512 neurons, 128 projection, 128 recurrent
 - To further improve the capability of capturing temporal dynamics of features

	Dev (ref)
Baseline	80.62
+ Channel selection on training	79.42
+ LSTM	77.09
+ Pitch(#3) + LSTM	76.24

Sak et al. "Long Short-Term Memory Recurrent Neural Network Architectures for Large Scale Acoustic Modeling," arXiv, 2014

Ranking A	Dev (SE)	Dev (CH2)	
Baseline (worn L R + 100K)	80.62	80.63	
+ Channel selection on training	79.42	79.40	
+ Pitch	79.17	79.18	
+ LSTM	76.24	76.30	
System combination (weigh 0.5:0.5)	73.53		

Single-Array Track 7.1% WER reduction

+ Channel selection on test (1 st best)	74.49	75.01	
+ Channel selection on test (2 nd best)	76.95	77.77	
+ Lattice combination	72.44	73.75	
System combination (weigh 0.6:0.4)	71.39		

Results (Baseline)

Track	Session		Kitchen	Dining	Living	Overall
	_	S02	86.50	78.89	78.64	
Sin	Dev	S09	81.39	79.60	76.65	80.62
gle		S01	82.80	67.13	81.75	
	Eval	S21	78.10	65.56	69.97	73.29

Dev \rightarrow Eval: Non-consistence exists

Results (Ranking A)

Track	Session		Kitchen	Dining	Living	Overall
	_	S02	80.89	72.61	70.37	
Sin	Dev	S09	73.02	73.02	69.48	73.53
ngle		S01	74.40	58.86	75.69	
	Eval	S21	68.89	57.64	62.02	65.25
		S02	77.41	71.30	67.57	
Mult	Dev	S09	71.58	69.61	70.38	71.39
tiple		S01	75.64	58.18	75.64	
	Eval	S21	68.38	61.14	66.24	66.27

Results (Ranking A)

Track	Session		Kitchen	Dining	Living	Overall	
Single	Dev	S02	<mark>80.8</mark> 9	72.61	70.37		
		S09	<mark>7</mark> 3.0 <mark>2</mark>	73.02	69.48	73.53	
	Eval	S01	7 <mark>4.4</mark> 0	5 <mark>8.8</mark> 6	75.69		
		S21	68.83	<mark>5</mark> 7.6 <mark>4</mark>	62.02	65.25	
Multiple	Dev	S02	77.41	71.30	67.57	71.39	
		S09	71.58	69.61	70.38		
	Eval	Singl	Single-Array \rightarrow Multiple-Array:				
		~3.5%	~3.5% improvements due to				
		poter	potential distributed diversity gain				

Results (Ranking A)

Track	Session		Kitchen	Dining	Living	Overall
Single	Dev	S02	80.89	72.61	70.37	
		S09	73.02	73.02	69.48	73.53
	Eval	S01	74.40	58.86	75.69	65.25
		S21	68.89	57.64	62.02	
Multiple		S 02	77.41	71.30	67.57	
	Dev	S09	71.58	69.61	70.38	71.39
		S01	75.64	58.18	75.64	
	Eval	S21	68.38	61.14	66.24	66.27

Risk: the given reference Kinect is accurate enough to provide the best performance among distributed arrays \rightarrow no enough room for improvement due to Kinects distribution in 2 sessions in Eval

<u>ଷ</u> ୧		S01	74.40	58.8		
	Eval	S21	68.89	57.64		65.25
Multiple	Dev	S02	77.41	71.30	67.5.	
		S0 9	71.58	69.61	70.38	71.39
	Eval	S01	75.64	58.18	75.64	
		S21	68.38	61.14	66.24	66.27

Trac

<u>S</u>

- A simple yet effective channel selection scheme
 - Entropy of DNN posterior probabilities
 - Meaningful for scenarios with distributed microphones/arrays available (Not for: only one consistent best microphone/array during dinner party)
- Be important to extract speaker characteristics
 - I-vectors, Pitch (future: speaker diarisation?)
- Temporal dynamics in feature extraction
 - LSTM is more efficient than TDNN (future: CNN for spectral dynamics?)
- Complementary knowledge for combination

- The authors acknowledge the support of Toshiba Research Europe Limited for valuable discussions and financial support of J. Zhang.
- The authors would like to thank Dr. Lin Wang for valuable discussions about speech separation using distributed microphones.
- B. T. Meyer was supported by the Cluster of Excellence 1077/1 Hearing4all.
- F. Xiong is supported by a Google Faculty Research Award.

Thanks for your listening ! Questions ?

10/09/18 © The University of Sheffield