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Channel Selection

m A multi-label DNN using filter bank features is employed to predict if
channel is oracle or not.
m Network architecture: 3 hidden layers (LSTM layer + two fully

System Overview

Proposed System:
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m Oracle: Upper performance bound by selecting the best hypothesis
among a set of decoded channels on utterance-level.

m Using all decoded channels leads to an absolute word error rate
reduction of 18.9% compared to the baseline.

Transparency colored regions states performance deviation among the two development

sessions. Classifier trained on 4 sessions (S1), 6 sessions (S2) and 10 sessions (S3).

Results on Development Set

Channels Dev
S02 S09 Overall . | |
Baseline (U ref + BFIt) (1) 83.4 81.1 82.5 m Results for the best system. WER (%) per session and location
U ref (4) : 76.1 72.8 74.8 together with the overall WER on the development set.
U 2— I§F|t (5) 70.868.2 69.3 Track Session Kitchen Dining Living Overall
U (20 66.363.3 65.1 . S02 887 808 78.4
U + BFIt, U (25) 65.562.3 64.3 Single <0 o1y 811 774 OLD
U + BFIt, U, U ref (29) 04.0 62.2 63.6 | S02 33 6 705 | 773
Multiple  g09 784 788 795 O
U is a single array channel, U ref is a channel from the reference array. ' ' '

Acoustic model adaptation

m Oracle-selected utterances are used to adapt the baseline DNN-based

acoustic model

m [ransfer learning: single epoch, very low learning rate for all layers,

last layer with higher learning-rate

Conclusion

not convincing.

m According to the oracle results channel selection seems promising.
m Results using energy or spatial information for channel selection are

m Ongoing investigation on model adaptation [1] and an enhancement
stage based on Beamforming and other denoising techniques [2] [3].
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