

Channel-selection for distant-speech recognition on CHiME-5 dataset

H. Unterholzner¹, L. Pfeifenberger¹, F. Pernkopf¹, M. Matassoni², A. Brutti², D. Falavigna²

unterholzner@student.tugraz.at, lpfeifen@gmail.com pernkopf@tugraz.at, matasso@fbk.eu, brutti@fbk.eu, falavi@fbk.eu

¹Signal Processing and Speech Communication Laboratory, Graz University of Technology, Austria ²SpeechTek, Fondazione Bruno Kessler, Italy

System Overview

Proposed System:

Channel Selection

- A multi-label DNN using filter bank features is employed to predict if channel is oracle or not.
- Network architecture: 3 hidden layers (LSTM layer + two fully connected layers), sigmoid activation in the output layer used for channel ranking.
- Training: Using different subsets of the CHiME-5 training data with

Channel selection using a DNN multi-label classifier: Predicts best channels according to oracle channels Acoustic model adaptation: based on transfer learning, using a selected subset of the utterances **Automatic quality estimation (Q-E): sentence confidence** score

Hypothesis fusion at utterance level with ROVER via majority voting

Oracle Results

Theoretical performance gain expected from hypothesis combination. • Oracle: Upper performance bound by selecting the best hypothesis among a set of decoded channels on utterance-level. Using all decoded channels leads to an absolute word error rate

binary cross-entropy as the loss function. ROVER results using the N best classified channels.

Transparency colored regions states performance deviation among the two development sessions. Classifier trained on 4 sessions (S1), 6 sessions (S2) and 10 sessions (S3).

reduction of 18.9% compared to the baseline.

Channels		Dev			
		S09	Overall		
Baseline (U_ref + BFIt) (1)	83.4	81.1	82.5		
U_ref (4)	76.1	72.8	74.8		
U + BFIt (5)	70.8	68.2	69.3		
U (20)	66.3	63.3	65.1		
U + BFIt, U (25)	65.5	62.3	64.3		
$U + BFIt$, U, U_ref (29)	64.6	62.2	63.6		

U is a single array channel, U_ref is a channel from the reference array.

Acoustic model adaptation

- Oracle-selected utterances are used to adapt the baseline DNN-based acoustic model
- Transfer learning: single epoch, very low learning rate for all layers, last layer with higher learning-rate

Results on Development Set

Results for the best system. WER (%) per session and location together with the overall WER on the development set.

	Track	Session	Kitchen	Dining	Living	Overall
Singl	Single	S02	88.7	80.8	78.4	Q1 E
	Single	S09	81.1	81.1	77.4	01.5
Multiple	Multipla	S02	83.6	79.5	77.3	70.6
	S09	78.4	78.8	79.5	19.0	

Conclusion

- According to the oracle results channel selection seems promising. Results using energy or spatial information for channel selection are not convincing.
- Ongoing investigation on model adaptation [1] and an enhancement stage based on Beamforming and other denoising techniques [2] [3].

Adaptation sot	Dev			
Auaptation set	S02	S09	Overall	
S02 (supervised)	62.6	84.5	70.9	
S09 (supervised)	86.9	56.5	75.3	
S02 (oracle WER \leq 60)	83.1	84.7	83.7	
S09 (oracle WER \leq 60)	86.8	80.8	84.5	

References

[1] M. Matassoni, M. Ravanelli, S. Jalalvand, A. Brutti, and D. Falavigna, "The FBK system for the CHiME-4 challenge," in 4th International Workshop on Speech Processing in Everyday Environments, San Francisco, US, September 2016.

[2] L. Pfeifenberger, M. Zöhrer, and F. Pernkopf, "Dnn-based speech mask estimation for eigenvector beamforming," in 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), March 2017, pp. 66–70.

[3] T. Schrank, L. Pfeifenberger, and M. Z. Deep Beamforming and Data Augmentation for Robust Speech Recognition: Results of the 4th CHiME Challenge.