Multiple Beamformers with ROVER for the CHiME-5 Challenge

Sining Sun ^[1], Yangyang Shi ^[2], Ching-Feng Yeh ^[2], Suliang Bu ^[3], Mei-Yuh Hwang ^[2], Lei Xie ^[1]

¹ Northwestern Polytechnical University ^[1]

² Mobvoi Al Lab, Seattle, USA ^[2]

³ Dept. of Electrical Engineering and Computer Science, University of Missouri-Columbia, USA/

Introduction

- We only focus on single array track
- Main work
- Multi-channel generalized weighted prediction error (GWPE) dereverberation
- Multiple beamformers (fixed beamformers and CGMM-MVDR) with Nbest lists ROVER
- Data augmentation
- CNN-TDNN-F acoustic model
- LSTM language model

Details

■ GWPE dereverberation

- □ GWPE is Multi-Input and Multi-Output (MIMO) algorithm
- GWPE can keep DOA information
- Our matlab code is available at https://github.com/snsun/gwpe-speech-dereverb

■ Multiple beamformers with Nbest lists ROVER

- Because it is very difficult to get the accurate DOA estimation, we design several fixed beamformers (FB) and each of them only focuses on one specific direction
- CGMM-MVDR beamformer is also used because of its great performance
- Get Nbest lists for beamformed signals and the final results achieved by ROVER

Acoustic model

- One CNN layer before factorized time delay neural network (CNN-TDNN-F)
- CNN-TDNN-F outperforms official TDNN model

LSTM language model

□ For every beamformed speech, LSTM language model is used to do lattice rescoring and generate additional Nbest lists for ROVER

MIMO GWPE Dereverb FB60 FB90 ... CGMM-MVDR Decoding (Ngram LM) FB60-Lattice ... MVDR-Lattice Additional LSTM LM Rescoring LSTM LM Rescoring FB60-NBest ... MVDR-NBest ... MVDR-NBest ... MVDR-NBest

Experimental Evaluation

Acoustic models

TDNN AM vs CNN-TDNN-F AM on dev set, using official training data

	,		
Training data	Beamforming	Acoustic model	WER(%)
Official	BeamFormit	TDNN	81.30
(worn+100K far-filed)		CNN-TDNN-F	75.91

Dereverberation and multiple beamformers with Nbest lists ROVER

- CNN-TDNN-F is used as AM
- GWPE and our proposed beamforming strategy are used

Training data	Acoustic model	Dereverb	Beamforming	WER(%)
	CNN-TDNN-F	No	Beamformit	75.91
Official worn+100K far-filed)		No	Multi beamformers with	72.54
		Yes	ROVER	71.56

Data augmentation and LSTM LM rescoring

- Only 22K utterances are selected randomly to do dereverb and beamforming
- □ Augment official training data using another enhanced 44K (CGMM-MVDR and 90-degree beamformer) utterances
- □ LSTM LM Nbest lists are used during ROVER

Training data	Dereverb	Beamforming	Nbest	WER(%)
Offical		Multi beamformers with ROVER	3-gram	71.56
Augmented			3-gram	70.68
(Offical + 44K)			Additional LSTM LM	69.57

Summary

- On the front-end signal processing, combining GWPE dereverberation and multiple beamformers with N-Best ROVER gave significant improvement
- On acoustic models, CNN-TDNN-F significantly improved over the TDNN backend
- On language models, LSTM language model rescoring led to a small WER reduction