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EVOLUTION OF CHIME CHALLENGES BLOCK DIAGRAM OF PROPOSED ASR SYSTEM B RESULTS-1 RESULT-2
S UT—— N Speech Signal - Feature E2E Acoustic Table 3: Res.ults of Variou.s E2E system a.nd their combinations [7] using 3-gram Table 6: Comparison of proposed system combination with baseline systems
moving talker (('?;id simulated noise (Train Dataset) Beamtorming Extraction 1 Modeling i\t/l per session and location together with the overall % WER on development on development set.
database) Recorder g . ’
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e ing S09 84.50 83.69 81.46 ' 502
. . 78.63
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b L Fvolution of database from CHIME-1 to CHIME-S models, hence called flatstart. o S02 85.89 79.88 77.49 20,14 e Developed E2E system using LE-MMI as objective function.
1gure 1: BEvolution of database from 1ME-1 to 1ME-D. C . - 509 79 79 79 44 77 06 : Porf e hen | i ; I
— Context dependency trees are not requlred. e l"erformance 1n Kitchen 1s very poor due to presence of more mu
' - ' - - : 2 4. 77. 75.2 t 1se.
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o CHiME-4 best system :2.2%WER

e CHIiME-5 : The task of distant multi-microphone con-
versational speech recognition.

e Database of CHiME-5 Challenge [1]:

— The scenario
+ Recording of twenty separate dinner parties
taking place in real homes. (natural conversa-
tional speech).

e Speech enhancement : delay-and-sum beamformer.
Applied on training and testing data [3].

e Feature extraction : Mel-frequency spectral coefti-

cient (MFSC) and Power normalised spectral coeffi-
cient (PNSC) [4].

e Decoding is performed using 3-gram LM followed by
RNNLM.

e System combinations:

- SC-1:523S3

- SC-2:5S1 @S2 @ S3)

- S5C-3:51 @52 @ S3 @ 54

Table 4: Results of various E2E system and their combinations using RNNLM
per session and location together with the overall % WER on development set.
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Table 5: Results of our best system (S5C-3) per session and location together
with the overall %WER on evaluation set.

former. This enhanced speech is used for training.

— Multiple speakers speaking at the same time.
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e S52-55: MFSC is 120-D (filterbank coefficients + A + AA)




