





# NMF based front-end processing in multichannel distant speech recognition

Nikhil Mohanan<sup>1</sup>, Premanand Nayak<sup>1</sup>, Rajbabu Velmurugan<sup>1</sup>, Preeti Rao<sup>1</sup>, Sonal Joshi<sup>2</sup>, Ashish Panda<sup>2</sup>, Meet Soni<sup>2</sup>, Rupayan Chakraborty<sup>2</sup>, Sunilkumar Kopparapu<sup>2</sup>

<sup>1</sup>Indian Institute of Technology Bombay, India <sup>2</sup>Tata Consultancy Services, India

Our system focuses on implementing a better front-end for the Automatic Speech Recognition (ASR) system

□ Single-channel enhancement using non-negative matrix factorization (NMF) followed by multichannel minimum variance distortionless response (MVDR) beamformer

□ Alternate model to enhance the MVDR output signal by a novel NMF based enhancement.



## **Challenge Setup And Baseline**

- > Distant speech recognition with natural conversational speech [1]:
  - Microsoft Kinects arrays, 4 microphones each, placed at different locations.
  - Session has 6 such arrays, 2 each at locations: living, kitchen and dining.
  - Session has 4 speakers, in the same room at a particular instant wearing a close-talking binaural mic.
- > Our results are for the single-array track (Ranking A) and focuses on acoustic robustness.
- ➤ We use baseline acoustic model (AM) and language model (LM)
- Baseline enhancement system
  - Single channel noise filtering using Weiner Filtering
  - Source localization by GCC-PHAT followed by Viterbi algorithm.
  - Delay Sum Beamformer (DSB)

## Proposed System



- Noise bases learning
  - Clean speech bases learned using unsupervised approach
  - MVDR output used for feature extraction and decoded by ASR system.
- > Degraded (reverb and noisy) speech spectrogram :  $Y = Y_r + Z = [W_r | W_n] [X_r^T | X_n^T]^T$
- > Reverb spectrogram  $Y_r = W_r X_r$ , Noise spectrogram  $Z = W_n X_n$
- > Reverb bases and activations related to corresponding clean bases and activations

# **Results and Analysis**

- Training using the baseline AM, a mixture of both close-talking microphones and array channels data.
- > Total of 100k (61349 close talking and 38651 array) utterances of this mixture
- $\succ$  Magnitude spectrogram obtained using a 64ms Hamming window with a 32ms hop.
- TDOA estimates obtained from NMF filtered channel Beamformit used compute steering vector for MVDR
- > Enhanced utterance used for ASR.

| Track | System                     | WER   |  |
|-------|----------------------------|-------|--|
|       | Degraded (single-channels) | 92.18 |  |
|       | Beamformit (Baseline)      | 91.33 |  |



#### Figure 1: Block diagram of MVDR+NMF system

- ➤ GCC-PHAT compute TDOA's.
- > Minimum Variance Distortionless Response Beamforming (MVDR)
  - For removal of directional noise
  - Covariance matrix computed using noisy frames located using VAD
- > Non-negative Matrix Factorization (NMF) [3] used to enhance MVDR output.

### ➤ Drawback:

- No improvement in terms of ASR.
  - Possible reason: noisy TDOA's fed as steering vector
- > Modified system : enhance each channel using NMF filtering followed by MVDR beamforming

## □ NMF + MVDR system:



|                         | Beamformit+NMF  | 93.94 |  |
|-------------------------|-----------------|-------|--|
| Single-Microphone Array | Beamformit+RNMF | 95.51 |  |
|                         | MVDR            | 96.68 |  |
|                         | NMF+MVDR        | 95.56 |  |
|                         | MVDR+NMF        | 96.80 |  |

 Table 1: Overall WER (%) for the GMM-HMM based systems tested on the development test set using baseline AM and LM.

- Enhancements done(GMM-HMM acoustic model):
  - Beamformit: Baseline enhancement by DSB beamforming
  - Beamformit+NMF: Beamformit followed by NMF de-noising for noise suppression
  - Beamformit+RNMF
  - MVDR:MVDR beamforming with TDOA's computed via GCC-PHAT
  - NMF+MVDR:NMF de-noising followed by MVDR beamforming
  - MVDR+NMF:MVDR beamforming followed by NMF.

| Track                      | Session | Kitchen | Living | Dining | Overall |
|----------------------------|---------|---------|--------|--------|---------|
| Single<br>Microphone Array | S02     | 97.58   | 96.47  | 94.56  | 95.56   |
|                            | S09     | 94.77   | 95.30  | 94.43  |         |

#### Table 2: Results on development dataset of the NMF+MVDR for GMM-HMM based systems

| Track                      | Session | Kitchen | Living | Dining | Overall |
|----------------------------|---------|---------|--------|--------|---------|
| Single<br>Microphone Array | S02     | 95.46   | 90.17  | 91.98  | 9285    |
|                            | S09     | 93.41   | 93.98  | 93.13  |         |

Table 3: Results on development dataset of the NMF+MVDR for TDNN based systems

Figure 2: Block diagram of NMF+MVDR system

- $\succ$  Input array signals were using NMF and fed to MVDR.
- > Supervised approach: clean speech and noise bases learnt from the degraded data

- $\succ$  WER is poor for all the locations and the .
- > Poor performance is train-test mismatch.
- Attempt was made to remove residual noise and reverberation in MVDR output by NMF and RNMF post filtering.
- Proposed methods however did not shown improvement in WER

## Acknowledgements

Part of the work supported by Bharti Centre for Communication in IIT Bombay, Council of Scientific and Industrial Research (CSIR), India and Tata Consultancy Services (TCS), India

## References

[1] J. Barker, S. Watanabe, E. Vincent, and J. Trmal, "The fifth CHiME Speech Separation and Recognition Challenge: Dataset, task and baselines," in Interspeech 2018 Hyderabad, India, Sep. 2018.

[2] X. Anguera, C. Wooters, and J. Hernando, "Acoustic beamforming for speaker diarization of meetings," IEEE Transactions on Audio, Speech, and Language Processing, vol. 15, no. 7, pp. 2011–2022, 2007.

[3] N. Mohanan, R. Velmurugan, and P. Rao, "A non-convolutive NMF model for speech dereverberation," in Interspeech, 2018.