Open-Domain Audio-Visual Speech Recognition and Video Summarization

Presenter: Florian Metze

Hyderabad, September 7, 2018

Motivation

Human information processing is inherently multimodal, and language is best understood in a situated context. Machines should be able to jointly process multimodal data, and not just text, images, or speech in isolation.

- Multimodality in computational models
 - Richer context modelling
 - Grounding of language
- True for a wide range of NL tasks
- Sequence-to-sequence NN is a convenient approach

Motivation - MT "green" is the correct term for the area, also in Portuguese You need "world knowledge" or "context information" in order to correctly interpret or translate this sentence In August 2018, both Google and Microsoft translate "green" incorrectly as "verde" I'm very close to the green but I didn't get it on the green so now I'm in this grass bunker. Similar problem with Eu estou muito perto do green, mas eu no pus a bola summarization - any type of no green, ento agora estou neste bunker de grama. language understanding

Team

Undergraduate Students

Alissa Ostapenko - WPI Karl Mulligan - Rutgers Sun Jae (Jasmine) Lee - UPenn

Senior Researchers

Graduate Students

Lucia Specia - Sheffield Florian Metze - CMU Loïc Barrault - Le Mans

Josiah Wang - Sheffield

Des Elliott - Edinburgh / Copenhagen

Pranava Madhyastha - Sheffield

Jindrich Libovicky - Charles Ramon Sanabria - CMU Shruti Palaskar - CMU Nils Holzenberger - JHU Amanda Duarte - UPC Ozan Caglayan - Le Mans

Remotely

Spandana Gella - Edinburgh Chiraag Lala - Sheffield

E	Bef	ore	JSALT	
Ν	/ulti	modal	ity useful for MT, but Multi-	30k data not really "hard"
#	Raw	z	System	
1	77.8	0.665	LIUMCVC_MNMT_C	
2	74.1	0.552	UvA-TiCC_IMAGINATION_U	
 3	70.3 68.1 65.1 60.6 59.7 55.9 54.4 54.2 53.3 49.4	0.437 0.325 0.311 0.196 0.136 0.08 -0.049 -0.091 -0.108 -0.144 -0.266	NICT_NMTrerank_C CUNI_NeuralMonkeyTextualMT_U DCU-ADAPT_MultiMT_C LIUMCVC_NMT_C CUNI_NeuralMonkeyMultimodalMT_U UvA-TiCC_IMAGINATION_C CUNI_NeuralMonkeyMultimodalMT_C OREGONSTATE_2NeuralTranslation_C CUNI_NeuralMonkeyTextualMT_C OREGONSTATE_1NeuralTranslation_C SHEF ShefClassProi C	A bird flies over the water
15	46.6 39.0 36.6	-0.37 -0.615 -0.674	SHEF_ShefClassInitDec_C Baseline (text-only NMT) AFRL-OHIOSTATE MULTIMODAL U	Multimodal Text
	0010	0107.1		(Elliott et al., 2017)

Highlights

- ASR & SLT:
 - Multi-task learning approaches that improve both tasks
 - One-to-many model generalizes better than many-to-one model
- Summarization:
 - Models that successfully generate summaries for videos
 - Multimodal models using action features that outperform text models
- Region-specific MMT:
 - Supervised attention that successfully grounds words to image regions
 - Models for explicit grounding and its integration into MT
- https://www.clsp.jhu.edu/workshops/18-workshop/

Dataset and Features

Florian, Ramon

Dataset

- 2,000 hours how-to video corpus looked promising
 - Harder than previous MT data
 - ASR baselines available, some "quality" metrics defined (480h "good")
 - Harvested from on-line sources
 - Youtube Standard License applies (same as AudioSet, Youtube 8M)
- Dataset & code will be made available
 - $\circ \quad {\sf Just \ submitted \ dataset \ description \ paper}$
- For now, contact me: <u>fmetze@cs.cmu.edu</u>

Dataset

- 2000h of how-to videos (Yu et al., 2014)
 - 300h for MT, 480h for ASR (as of today)
 - Shared splits, held-out data
- Ground truth captions
- Metadata
 - $\circ \quad \text{Number of likes / dislikes}$
 - \circ Visualizations
 - $\circ \quad \text{Uploader, Date} \\$
 - Tags
- Video descriptions ("summaries")
 80K descriptions for 2000h
- Very different topics
 - Cooking, fixing things, playing instruments, etc.
- 300,000 segments translated into Portuguese

Automatic Speech Recognition Spoken Language Translation

Florian, Jindrich, Ozan, Ramon, Shruti

Comparison of Approaches

- Compare with 100d speaker i-Vectors
- Combine place/ object features, add speaker features to get 161-dim visual feature (with PCA)

Model	Features	WER(%)
DNN (Baseline)		23.4
Adaptive Training	161-dim visual features	22.3
Adaptive Training	100-dim speaker i-vectors	22.0
Adaptive Training	261-dim fused features	21.5

Analysis on 4h Test Set (156 Videos)

- Baseline: 23.4% WER with DNN
- AM Adaptation: 22.3% (object & place features)
- LM Adaptation: 22.6% (object & place features)
- AM+LM: ~21.5% WER with rescoring
- Almost 10% rel. improvement over reasonable HMM-DNN baseline

Result Analysis – "indoor" vs "outdoor" Using object and place features only LM adaptation improves results across the board 0 126/156 videos improve AM improves "noisy" videos • 55/156 videos improve (most are "outdoor", according to their category) Video Category | WER% of the baseline DNN | WER% of the DNN with place features typical indoor 22.1 21.7 27.6 25.7 other

Encoder-Side Integration

- Integrate linear feature shift approach before main encoder
- Random selection of frame rather than pooling
- Action features (rather than object, scene)

	Params	val WER \Downarrow	test WER ↓
S2S ASR	13.7M	19.1	20.0
S2S MMASR	13.8M	18.0	18.7

Table 3: Comparison of monomodal and multimodal ASR.

Multimodal ASR and SLT Conclusions

- Multimodal ASR with S2S Models
 - Seeing nice improvements over baseline(s)
 - Decoder side improvements consistent with previous work
 - Further exploration: Temporal smoothing of visual features, ...
 - Further analysis (shared representations?) required
- Spoken Language Translation
 - o Mutual benefits between SLT and ASR tasks
 - One-to-Many (OTM) better than Many-to-One (MTO)
 - Hierarchical SLT performs best, closing gap to "Cascade"

Summarization

Florian, Jasmine, Jindrich, Shruti, Spandana

Summarization Present (subset of) information in shorter form Maybe across modalities Can be abstractive or extractive Generate "new" phrasing or content Evaluation is hard Task dependent Or use ROUGE/ BLEU like metrics to measure precision/ recall

Spanish Omelet

~1.5 minutes of audio and video

Description (33 words on avg)

how to cut peppers to make a spanish omelette ; get expert tips and advice on making cuban breakfast recipes in this free cooking video .

Transcript (290 words on avg)

on behalf of expert village my name is lizbeth muller and today we are going to show you how to make spanish omelet . i 'm going to dice a little bit of peppers here . i 'm not going to use a lot , i 'm going to use very very little . a little bit more then this maybe . you can use red peppers if you like to get a little bit color in your omelet . some people do and some people do n't . but i find that some of the people that are mexicans who are friends of mine that have a mexican she like to put red peppers and green peppers and yellow peppers in hers and with a lot of onions . that is the way they make there spanish omelets that is what she says . i loved it , it actually tasted really good . you are going to take the onion also and dice it really small . you do n't want big chunks of onion in there cause it is just pops out of the omelet . so

Datase	t statistics		
Most frequent v	vords in transcript	Most frequent wo	ords in description
41812 ,	5627 have	4806 .	579 your
41125 .	5035 with	3806 a	387 clip
33193 the	5022 are	3799 in	369 when
30993 to	5007 just	3058 this	360 get
25738 you	4555 be	2922 free	349 -
25348 and	4459 for	2883 the	339 more
19516 a	4294 want	2876 to	328 that
15838 it	4078 up	2832 video	327 you
14457 that	3860 if	2264 and	307 lesson
13966 of	3805 'm	1948 learn	298 are
12594 is	3621 or	1779 from	285 by
11573 i	3586 here	1720 on	273 's
9731 going	3572 like	1639 with	268 make
9652 in	3487 one	1460 how	262 be
9384 we	3475 as	1321 tips	257 can
8698 your	3465 now	1220 ,	242 do
8491 this	3324 there	1117 for	232 music
8185 's	3278 they	1036 of	225 or
7873 so	3259 what	756 expert	221 it
6877 on	3148 go	675 an	218 use
6571 're	2956 then	654 about	217 out
6347 do	2933 get	634 is	214 as

need the complete t	ranscri	pt?
	Rouge-L	Content F1
No input = Language model	27.5	8.3
Extracted sentence (itself 18.8 F1 points)	46.6	36.0
First 200 tokens	40.3	27.5
Complete transcript (up to 650 tokens)	53.9	47.4

Rouge-LContent F1Language model27.58.3Extractive rules16.418.8S2S from extractive rules46.636.0Text-only input53.947.4Action features38.524.8Action features + RNN46.334.9Text + action features w/o RNN54.948.9Text + action features w/ RNN53.446.8	Overview of the Result		
Rouge-LContent F1Language model27.58.3Extractive rules16.418.8S2S from extractive rules46.636.0Text-only input53.947.4Action features38.524.8Action features + RNN46.334.9Text + action features w/o RNN54.948.9Text + action features w/ RNN53.446.8			Content
Language model27.58.3Extractive rules16.418.8S2S from extractive rules46.636.0Text-only input53.947.4Action features38.524.8Action features + RNN46.334.9Text + action features w/o RNN54.948.9Text + action features w/ RNN53.446.8		Rouge-L	F1
Extractive rules 16.4 18.8 S2S from extractive rules 46.6 36.0 Text-only input 53.9 47.4 Action features 38.5 24.8 Action features + RNN 46.3 34.9 Text + action features w/o RNN 54.9 48.9 Text + action features w/ RNN 53.4 46.8	Language model	27.5	8.3
S2S from extractive rules 46.6 36.0 Text-only input 53.9 47.4 Action features 38.5 24.8 Action features + RNN 46.3 34.9 Text + action features w/o RNN 54.9 48.9 Text + action features w/ RNN 53.4 46.8	Extractive rules	16.4	18.8
Text-only input 53.9 47.4 Action features 38.5 24.8 Action features + RNN 46.3 34.9 Text + action features w/o RNN 54.9 48.9 Text + action features w/ RNN 53.4 46.8	S2S from extractive rules	46.6	36.0
Action features 38.5 24.8 Action features + RNN 46.3 34.9 Text + action features w/o RNN 54.9 48.9 Text + action features w/ RNN 53.4 46.8	Text-only input	53.9	47.4
Action features + RNN46.334.9Text + action features w/o RNN54.948.9Text + action features w/ RNN53.446.8	Action features	38.5	24.8
Text + action features w/o RNN54.948.9Text + action features w/ RNN53.446.8	Action features + RNN	46.3	34.9
Text + action features w/ RNN53.446.8	Text + action features w/o RNN	54.9	48.9
	Text + action features w/ RNN	53.4	46.8

Ex	ample	
-		
Ref.	stretching out your calves is a great way to alleviate stress and rejuvenate your muscles . learn a healthy leg stretch from a yoga instructor in this free yoga video .	
Text	stretching is a great way to warm up your calves . learn some calf raises from a professional pilates instructor in this free fitness video .	Content F1
Actions RNN	the yoga chair pose is a great way to strengthen the muscles in the upper back . learn about shoulder and deltoid exercises in this free hatha yoga video .	Content F1
Actions	learn the basics of hatha yoga with expert tips on headache relief in this free home improvement video ur knees as much as	Content F1
	I 🜒 0:36 / 0:51	90

Ex	ample	
Ref.	partial dentures come in both plastic and metal versions . examine different types of partial dentures with information from a dentist in this free oral hygiene video .	
Text	partial dentures will help to prevent dentures . learn about partial dentures from a dentist in this free oral hygiene video .	Content F1
Actions RNN	do n't leave a home drug test . learn about vacuum cleaners with expert tips from a dentist in this free oral hygiene video .	Content F1
Actions	in order to make an nail art design, get expert tips and advice on housecleaning in this free video series that will teach you every- thing you need to know to make your own ceviche in this free video.	Content F1
	🔹 🗘 1:38 / 1:50	91

Ongoing Work

- Treat context vector like visual feature use for adaptation
 - $\circ\quad$ General framework for adaptation of S2S models
- Multi-document summarization
 - Create captions for multiple videos together this would be really useful
 - A bit slow to train (2000h ...), but running now using multi-task encoders
 - Form of data augmentation?
- Discriminative summarization
 - See three videos at the same time: two similar, one different
 - Explain (e.g. generate text) how one is different from the other(s)
 - Use ranking loss for discrimination

Summarization Conclusion

- It works! Kind of.
- *Text-generated descriptions* are generative, pretty detailed and often repeats certain key phrases.
- Action-feature generated text is boiler-plate but accurate, Act-RNN text is more diverse and more self-consistent.
- Need to tie in with representation learning and investigate portability

Take-Home Messages

- Interesting insights and comparisons across tasks
- Promising results for SLT & ASR, improved performance
- Summarization works surprisingly well, need meaningful evaluation
- Region-specific MMT makes sense with the right evaluation
- CCA can obtain rich representations from diverse views and modalities
- MTL can be useful: potential gains << semantic relatedness of the signals

More to come (data and code)

https://github.com/srvk/nmtpy-jsalt

•	Shruti Dalaskar, Pamon Sanahria, and Elorian Metze, End-to-end multi-modal speech recognition. In Proc
•	ICASSP. Calgary, Canada, 2018. IFFF.
•	Abhinav Gupta, Yajie Miao, Leonardo Neves, and Florian Metze. Visual features for context-aware speech recognition. In Proc. ICASSP, New Orleans, LA, 2017. IEEE.
•	Yajie Miao and Florian Metze . Open-Domain Audio-Visual Speech Recognition: A Deep Learning
	Approach. In Proc. INTERSPEECH 2016. San Francisco, US, 2016. ISCA.
•	Ozan Caglayan, Loïc Barrault, Fethi Bougares. Multimodal attention for neural machine translation. In arXiv 1609.03976.
•	Caglayan, Ozan, et al. LIUM-CVC Submissions for WMT17 Multimodal Translation Task. In Proc. WMT, Copenhagen, Denmark, 2017.
•	Jindřich Libovický, Jindřich Helcl,. Attention Strategies for Multi-Source Sequence-to-Sequence Learning. In Proc. ACL, Vancouver, Canada, 2017.
•	Desmond Elliott, Stella Frank, Loic Barrault, Fethi Bougares, and Lucia Specia. Findings of the Second
	Shared Task on Multimodal Machine Translation and Multilingual Image Description. In Proc. WMT,
	Copenhagen, Denmark, 2017.

References

- Shoou-I Yu, Lu Jiang, and Alex Hauptmann. Instructional Videos for Unsupervised Harvesting and Learning of Action Examples. In Proc. ACM MM, Orlando, FL; U.S.A., Nov 2014. ACM.
- Alayrac, Jean-Baptiste, et al. "Unsupervised learning from narrated instruction videos." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2016.
- Hara, K., Kataoka, H., & Satoh, Y. (2018, June). Can spatiotemporal 3D CNNs retrace the history of 2D CNNs and ImageNet?. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA.
- Hotelling, H., Relations between two sets of variants (1936)
- Wang, W., Arora, R., Livescu, K. & Bilmes, J. On deep multi-view representation learning: objectives and optimization (2016)
- Benton, A., Khayrallah, H., Gujral, B., Reisinger, D. A., Zhang, S., Arora, R., Deep generalized canonical correlation analysis (2017)
- Arora, S., Liang, Y., Ma, T., A Simple but Tough-to-Beat Baseline for Sentence Embeddings, ICLR 2017.
- Rich Caruana, Multitask Learning. 1998. Ph.D Thesis, Carnegie Mellon University.

