

CHIME The 5th International Workshop on WORKSHOP Speech Processing in Everyday En Speech Processing in Everyday Environments

THE STC SYSTEM FOR THE **CHIME 2018 CHALLENGE**

Ivan Medennikov, Ivan Sorokin, Aleksei Romanenko, Dmitry Popov, Yuri Khokhlov, Tatiana Prisyach, Nikolay Malkovskii, Vladimir Bataev, Sergei Astapov, Maxim Korenevsky, **Alexander Zatvornitskiy**

WHO WE ARE

STC-INNOVATIONS

- Top-3 in Babel OpenKWS, 1st NIST i-vector Machine Learning Challenge 2014, 2nd NIST LRE 2015, 2nd NIST SITW, 2015 2nd ANTISPOOF 2015, 2017 1nd ANTISPOOF 2017
- Multi-disciplinary team with expertise in general machine learning, speech recognition, NLU, bi-modal (voice+face) identification
- 3 Close partnership with ITMO University

Outline

- **▶** Introduction
- Unsuccess story
- Success story
- **▶** Conclusions
- Final results on eval and future work

Introduction

Main challenges

- Conversational speech
- ► Noisy real-world environment
- ► Far-field conditions
- Great amount of overlapped speech

Beamforming and Enhancement: Unsuccess story

► MVDR + CGMM/Music/estnoiseg mask

► MVDR + CGMM/Music/estnoiseg mask

► MVDR + CGMM/Music/estnoiseg mask

▶ DeepBeam [Qian, 2018] *

*https://github.com/auspicious3000/deepbeam

► MVDR + CGMM/Music/estnoiseg mask

▶ DeepBeam [Qian, 2018]

► MVDR + CGMM/Music/estnoiseg mask

▶ DeepBeam [Qian, 2018]

► GEV + BLSTM mask [Heymann, 2016]*

^{*}https://github.com/fgnt/nn-gev

- ► MVDR + CGMM/Music/estnoiseg mask
- ▶ DeepBeam [Qian, 2018]
- ► GEV + BLSTM mask [Heymann, 2016]

► MVDR + CGMM/Music/estnoiseg mask

X

▶ DeepBeam [Qian, 2018]

► GEV + BLSTM mask [Heymann, 2016]

Denoising with CGMM mask

► MVDR + CGMM/Music/estnoiseg mask

X

▶ DeepBeam [Qian, 2018]

► GEV + BLSTM mask [Heymann, 2016]

Denoising with CGMM mask

- ► MVDR + CGMM/Music/estnoiseg mask
- ▶ DeepBeam [Qian, 2018]
- ► GEV + BLSTM mask [Heymann, 2016]
- Denoising with CGMM mask
- Denoising Wavenet [Rethage, 2017]

► MVDR + CGMM/Music/estnoiseg mask

X

▶ DeepBeam [Qian, 2018]

► GEV + BLSTM mask [Heymann, 2016]

Denoising with CGMM mask

Denoising Wavenet [Rethage, 2017]

- ► MVDR + CGMM/Music/estnoiseg mask
- ▶ DeepBeam [Qian, 2018]
- ► GEV + BLSTM mask [Heymann, 2016]
- Denoising with CGMM mask
- Denoising Wavenet [Rethage, 2017]
- Deep Clustering

► MVDR + CGMM/Music/estnoiseg mask

X

▶ DeepBeam [Qian, 2018]

► GEV + BLSTM mask [Heymann, 2016]

Denoising with CGMM mask

Denoising Wavenet [Rethage, 2017]

Deep Clustering

- ► MVDR + CGMM/Music/estnoiseg mask

▶ DeepBeam [Qian, 2018]

X

► GEV + BLSTM mask [Heymann, 2016]

Denoising with CGMM mask

Denoising Wavenet [Rethage, 2017]

Deep Clustering

Permutation invariant training (PIT)

► MVDR + CGMM/Music/estnoiseg mask

X

▶ DeepBeam [Qian, 2018]

► GEV + BLSTM mask [Heymann, 2016]

Denoising with CGMM mask

Denoising Wavenet [Rethage, 2017]

Deep Clustering

Permutation invariant training (PIT)

- ► MVDR + CGMM/Music/estnoiseg mask
- ▶ DeepBeam [Qian, 2018]
- ► GEV + BLSTM mask [Heymann, 2016]
- Denoising with CGMM mask
- Denoising Wavenet [Rethage, 2017]
- Deep Clustering
- Permutation invariant training (PIT)
- ► WPE

- ► MVDR + CGMM/Music/estnoiseg mask
- ► DeepBeam [Qian, 2018]
- ► GEV + BLSTM mask [Heymann, 2016]
- Denoising with CGMM mask
- Denoising Wavenet [Rethage, 2017]
- Deep Clustering
- Permutation invariant training (PIT)
- ► WPE

Multi-channel speaker-aware model training: embeddings

embedding training by triplet ranking loss [Ye and Guo, 2018]

Multi-channel speaker-aware model training: final model

- auxiliary inputs [Zmolikova, 2018]
- residual attention network [Wang, 2017]
- speaker-adapted classifier *
- sum and average all embeddings for speaker in utterance

^{*}https://github.com/Microsoft/LightGBM

Speaker adaptation by frame-level mask: training

			<s< th=""><th>il></th><th></th><th></th><th></th><th></th><th>w</th><th>ord</th><th></th><th></th><th></th><th><si< th=""><th> ></th><th></th><th><n< th=""><th>oise</th><th>></th><th></th><th></th><th><sil></sil></th><th></th><th></th></n<></th></si<></th></s<>	il>					w	ord				<si< th=""><th> ></th><th></th><th><n< th=""><th>oise</th><th>></th><th></th><th></th><th><sil></sil></th><th></th><th></th></n<></th></si<>	 >		<n< th=""><th>oise</th><th>></th><th></th><th></th><th><sil></sil></th><th></th><th></th></n<>	oise	>			<sil></sil>		
P01(id 1)	0	0	0	0	0	0	1	1	1	1	1	1	0	0	0	0	1	1	1	0	0	0	0	0
	<si< th=""><th>il></th><th>١</th><th>vord</th><th></th><th><</th><th><sil></sil></th><th></th><th></th><th><</th><th>aught</th><th>:></th><th></th><th></th><th></th><th></th><th><si< th=""><th> ></th><th></th><th></th><th>W</th><th>ord</th><th><si< th=""><th> ></th></si<></th></si<></th></si<>	il>	١	vord		<	<sil></sil>			<	aught	:>					<si< th=""><th> ></th><th></th><th></th><th>W</th><th>ord</th><th><si< th=""><th> ></th></si<></th></si<>	 >			W	ord	<si< th=""><th> ></th></si<>	>
P02(id 2)	0	0	2	2	2	0	0	0	2	2	2	2	2	2	0	0	0	0	0	0	2	2	0	0
	<	<sil></sil>	>		wo	rd		<	sil>	V	vord			<	sil>			<5	pn>	•		<sil< th=""><th>></th><th></th></sil<>	>	
P03(id 4)	0	0	0	4	4	4	4	0	0	4	4	4	0	0	0	0	0	4	4	4	0	0	0	0
				<si< th=""><th>l></th><th></th><th></th><th></th><th><</th><th>aught</th><th>:></th><th><</th><th><sil></sil></th><th></th><th>W</th><th>ord</th><th></th><th></th><th><si< th=""><th>l></th><th></th><th>W</th><th>ord</th><th></th></si<></th></si<>	l>				<	aught	:>	<	<sil></sil>		W	ord			<si< th=""><th>l></th><th></th><th>W</th><th>ord</th><th></th></si<>	l>		W	ord	
P04(id 8)	0	0	0	0	0	0	0	0	8	8	8	0	0	0	8	8	8	0	0	0	0	8	8	8
Ideal mask (general)	0	0	2	6	6	4	5	1	11	15	15	7	2	2	8	8	9	5	5	4	2	10	8	8
Ideal targets (if P01)	1	1	0	0	0	0	1	1	1	0	0	1	0	0	0	0	1	1	1	0	0	0	0	0

Speaker adaptation by frame-level mask: filtering

	$x_{t,1}$	$x_{t+1,1}$			•••			$x_{t+23,1}$
Original acoustic feats	:	:		:				
	$x_{t,n}$	$x_{t+1,n}$		$x_{t+23,n}$				
Speaker mask	0.6	0.7	0.5	0.1	0.2	0.3	0.4	0.4
	$x_{t,1}$	$x_{t+1,1}$	$x_{t+2,1}$				$x_{t+22,1}$	$x_{t+23,1}$
Filtered acoustic feats				Throw out			:	:
	$x_{t,n}$	$x_{t+1,n}$	$x_{t+2,n}$					$x_{t+23,n}$

* https://github.com/speechpro/mixup (for Kaldi)

Mixup [Medennikov, 2018] *

- virtual training examples by combining existing ones
- especially effective on mismatched test data

Generation of new training data

$$\tilde{x} = \lambda x_i + (1 - \lambda)x_j$$

 $\tilde{y} = \lambda y_i + (1 - \lambda)y_i$

System I

System II and III

System II and III

System II and III

System IV

Decoding and models combination

- Decoding: application of softmax temperature to a prior distribution
- Fusion: posterior-level combination or two types of lattice-level combination

Fusion

WER (%) for the final system per session and location

Track	Session	Kitchen	Dining	Living	Overall
Single	S02 S09	67.7 58.0	59.7 59.8	55.5 54.9	59.4
Single+Dev	S02 S09	65.5 55.7	56.2 56.8	52.4 51.9	56.6
Multiple	S02 S09	65.8 55.5	57.9 57.3	55.1 55.4	58.1
Multiple+Dev	S02 S09	62.1 51.2	52.2 51.6	50.2 51.4	53.5

Summary

Track	Features	Adaptation	Model	Loss	WER			
Single	CFFT FBANK MFCC MFCC	Auxiliary soft-mask soft-mask ivec+mask	CNN+TDNN TDNN-LSTM TDNN-LSTM BLSTM	CE, LF-MMI LF-MMI LF-MMI CE	63.4 63.3 63.8 66.0			
		59.4						
Single+Dev		56.6						
Multiple		58.1						
Multiple+Dev		Fusion (4 systems)*						

Common speech processing approaches face great challenges in real-world conditions

- Common speech processing approaches face great challenges in real-world conditions
- ▶ Both speaker separation and speaker adaptation are extremely important

- Common speech processing approaches face great challenges in real-world conditions
- Both speaker separation and speaker adaptation are extremely important
- Data augmentation and normalization are reasonably effective for this type of data

- Common speech processing approaches face great challenges in real-world conditions
- ▶ Both speaker separation and speaker adaptation are extremely important
- Data augmentation and normalization are reasonably effective for this type of data
- Fusion always gives a good performance improvement

Final results on eval and future work

Baseline	Our result	abs, %	rel, %
73.3	55.5	-17.8	-24.3

- Joint training of all components (front-end and back-end)
- Diarization for unsegmented real-world data

Contributions of applied methods

Method	Abs WER improvement, %
Array synchronization	0.9
Room simulator	1.6
Alignment transfer (worn half-sum → kinect)	1.3
Speaker adaptation (gating/throw out)	7/5
Speaker adaptation (i-vector)	2.4
Speaker adaptation (auxiliary)	4.1
Multi-channel model	2.2
Strict cleanup	1.3
WPE	1.4
Mixup	1.1
Speed Perturbation	0.9
Backstitch training	0.5
Fusion	3.9

THANK YOU

ABOUT THE COMPANY

STC-Innovations is a leader in the multimodal biometric market. STC-Innovations develops multimodal biometric solutions based on person-identifying technologies via voice, face and other noncontact biometric features.

STC-Innovations is a spin-off company of the Speech Technologies Center, leading global provider of innovative systems in high-quality recording, audio and video processing and analysis, speech synthesis and recognition, and real-time, high-accuracy voice and facial biometrics solutions with over 20 years of research, development and implementation experience in Russia and internationally.

STC is ISO-9001: 2008 certified.

CONTACTS

Russia

4 Krasutskogo street, St. Petersburg, 196084

Tel.: +7 812 325-8848 Fax: +7 812 327 9297

Email: info@speechpro.com

USA

Suite 316, 369 Lexington ave New York, NY, 10017

Tel.: +1 646 237 7895

Email: sales-usa@speechpro.com