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Abstract
In this paper, we describe our ZTSpeech for two tracks of CHiME-

5 challenge. For front-end, our experiments conduct the comparison-
s between several popular beamforming methods. Besides, we also
propose a omnidirectional minimum variance distortionless response
(OMVDR) followed by weighted prediction error (WPE). Furthermore,
we investigate the impact of data augmentation and data combination-
s. For back-end, several acoustic models (AMs) with different archi-
tectures are deeply investigated. N-gram-based and recurrent neural
network (RNN)-based language models (LMs) are both evaluated. For
single-array track, by combining the most effective approaches, our
final system can achieve 9.92% promotion on performance in devel-
opment set, from 81.07% to 71.15%, and 11.94% in evaluation set,
from 73.27% to 61.33%. For multiple-array track, our final system
can achieve 8.85% improvement in development set, from 82.73% to
73.88%.

Introduction
In recent years, the performance of automatic speech recogni-
tion (ASR) has been significantly improved due to the success
of deep neural networks. However, the recognition performance
under far-field cases is still limited, which gradually attracts
more and more attention.

Our goal is to build a system for far-field multi-channel speech
recognition, which involves front-end and back-end techniques.
Our contributions are as follows:
• Classical beamforming methods are evaluated on CHiME-5

dataset. Besides, OMVDR-WPE is proposed.
• We explore how the performance varies to different combina-

tions and augmentation of our data.
• We incorporated LSTM and BLSTM into LF-MMI TDNN to

explore the impact of different AMs on performance.
• The role of different LMs is also investigated.

System Overview

Omnidirectional Beamforming
• The traditional MVDR is designed to choose the coefficients

of the filter which can minimize the output power. It has the
constraint that the desired speech signal is not affected.

• OMVDR calculates W for all directions and provides multi-
ple enhanced speech. The speech with the highest energy is
selected as the final enhanced speech.

• In this experiment, 37 directions of arrival are selected, which
distributed from 0 degrees to 180 degrees with 5 degrees step.

WPE-based speech dereverberation
WPE uses an autoregressive generative model for the acoustic
transfer functions and models the spectral coefficients of the de-
sired speech signal using a Gaussian distribution. Dereverbera-
tion is then performed by maximum likelihood estimation of all
unknown model parameters.

In an enclosed place, the reverberant speech signal captured by
M microphones are typically modeled in the short-time Fourier
transform (STFT) domain as:

xmt,f =

Lh−1∑
l=0

(hml,f )st−l,f + emt,f , (1)

Dereverberated signal can be estimated as:

dt,f = x1t,f −
M∑
m=1

(gmf )xmt−D,f . (2)

Therefore, dereverberation can be performed by estimating the
regression vectors gmf and calculating an estimate of the desired
speech signal dt,f .

Acoustic Model
• LF-MMI-based TDNN is utilized in this experiment.
• LSTM and BLSTM are integrated into TDNN.
• 3 TDNN-based and 3 LSTM-TDNN-based AMs have been

conducted.

Language Model
• Several Good Turning-based, Kneser-Ney-based and Max

Entropy-based 3-gram, 4-gram and 5-gram LMs are conduct-
ed.

• LM with the minimum PPL is rescored by RNN-based and
LSTM-based LMs.

Experimental Setup
• Acoustic features are generated based on 80-dimensional log-

mel filterbank features and 3-dimensional pitch features.

• The alignments are generated by a pre-trained GMM-HMM
system.

• LMs are trained on transcription texts of the training set.

ZTSpeech for Far-field Speech Recogni-
tion

Speech Enhancement
• Several popular beamforming methods have been applied to

enhancing data.

• AM is trained via baseline script and keeps fixed.

• Training data is unenhanced while the development set is en-
hanced.

System
Dev Set (%)

S-array M-array
WDAS 81.07 82.73
GSC 80.79 82.35

cGMM-MVDR 88.95 83.04
cGMM-PMWF 85.51 86.11
WPE-SMVDR 87.20 −
SMVDR-WPE 83.43 −
OMVDR-WPE 80.18 83.18

Table 1: Comparison of beamforming methods in WER (%).

• For single-array track, OMVDR-WPE achieves the best re-
sults with 0.89% improvement.

Data Selection and Augmentation
• BeamformIt is applied to enhancing training data. (OMVDR-

WPE is omitted in this section.)

• Impact of data augmentation is evaluated.

System Data Combinations Data Size
Dev Set (%)

S-array M-array
Baseline Original 100k 81.07 82.73
System1 Enhanced 300k 79.44 81.44
System2 Original+Enhanced 300k 79.65 81.62
System3 Original+Enhanced 500k 79.90 81.71

Table 2: Comparison of data augmentation in WER (%).

• Larger train set introduces more complex conversation sce-
narios and acoustic information, which can be modeled by
AM.

• Due to the training data and the development data are
matched, the performance is further improved.

Acoustic Model
• Two training datasets are conducted. Data 1 consists of origi-

nal and WDAS-based enhanced data. Compared with Data 1,
Data 2 has additional OMVDR-WPE-based enhanced data.

• Several LF-MMI-based TDNN and LSTM-TDNN AMs with
different structures are applied.

Data System
Dev Set (%)

S-array M-array
WDAS OMVDR-WPE WDAS

Data 1

TDNN-a 79.44 79.87 81.44
TDNN-b 73.59 75.79 76.13
TDNN-c 71.81 74.37 74.67

LSTM-TDNN-a 77.58 81.36 80.77
LSTM-TDNN-b 74.50 76.58 75.92

BLSTM-TDNN-a 78.36 84.05 83.69

Data 2
TDNN-a 79.90 80.13 −
TDNN-c 73.29 73.94 −

Table 3: Comparison of different AMs in WER (%).

• TDNN-c achieves the best results, which is selected for the
following experiments.

Language Model
• System performance under different N-gram LMs is explored.

• RNN-based LMs are used to rescore the 3-gram LM.

• Only WDAS-based deveopment set is evaluated.

System PPL
Dev Set (%)

S-array M-array
3-gram 154.5547 71.77 74.67
4-gram 154.7304 71.81 74.69
5-gram 155.1294 71.66 74.75

3-gram+RNN-LM − 71.36 74.27
3-gram+LSTM-LM-a − 71.18 73.94
3-gram+LSTM-LM-b − 71.15 73.88

Table 4: Comparison of LMs in WER (%).

• Max-entropy-based LMs achieve lower PPL than Good
Turning-based and Kneser-Ney-based LMs.

• Max-entropy-based 3-gram LM achieves the minimum PPL.
And LM rescored by LSTM-LM-b achieves the best perfor-
mance.

Detailed Results for the best system.

Track Rank Session K. D. L. Overall

S-array

Rank A

Dev
S02 80.62 71.91 68.04

71.66
S09 71.10 69.14 66.48

Eval
S01 68.72 54.90 73.51 62.01
S21 66.21 55.09 59.06

Rank B

Dev
S02 80.48 71.36 67.75

71.15
S09 69.84 69.11 65.46

Eval
S01 68.76 53.90 73.56 61.33
S21 65.55 54.07 58.05

M-array

Rank A

Dev
S02 79.82 73.33 72.72

74.67
S09 73.33 72.53 74.01

Eval
S01 67.99 54.64 73.10 61.77
S21 65.84 54.44 59.63

Rank B

Dev
S02 79.45 73.48 73.00

73.88
S09 70.66 69.99 72.16

Eval
S01 67.72 53.61 72.91 61.01
S21 65.13 53.74 58.45

Table 5: Results for the best system. WER (%) per session and location together with the overall WER.

Conclusions
We introduce ZTSpeech system for CHiME-5 challenge. By us-
ing fixed AM, OMVDR-WPE achieves 0.89% WER improve-
ment compared with WDAS. The performance of the system
is further improved by data augmentation and enhancement.
By combining the most effective AM and LM, for single-array
track, our final system can achieve 9.92% improvement in devel-
opment set, from 81.07% to 71.15%, and 11.94% in evaluation
set, from 73.27% to 61.33%. For multiple-array track, our fi-
nal system can achieve 8.85% improvement in development set,
from 82.73% to 73.88%.

Forthcoming Research
For front-end, classical beamforming methods do not perform
well. DNN-based beamforming is omitted because parallel cor-
pus is not available. We also experiment with single-channel and
multi-channel-based unsupervised speech enhancement. Due to
time constraint, we do not fine tune models, and the performance
fails to exceed the baseline. We will try to generate parallel
dataset by using room impulse response and try DNN-based ap-
proaches. We will continue to explore unsupervised speech en-
hancement, which have more practical values.
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