

Situation Informed End-to-End ASR for Noisy Environments

Suyoun Kim*, Siddharth Dalmia*, Florian Metze Carnegie Mellon University, School of Computer Science

Introduction

- Problem and Challenge:
 - Distant microphone conversational speech recognition in everyday home environments^[1]
 - Insufficient amount of training data
- Our goal:
 - Improve the performance of the end-to-end ASR modeling with using context information, without using any speech enhancement technique or data augmentation or data cleanup or lexicon information.

Our proposed methods

Our proposed methods

- We serialize dataset based on their onset times and sessions
- Our decoder is additionally conditioning on the dialog-context vector which represents the preceding sentence.
- One way to represent the dialog-context vector: the final hidden decoder states of preceding sentence.

Results and Analysis

Figure 3: WER Comparison of EnvModel and DialogModel

1. Acoustic Environment Modeling

- Different arrays have different acoustic conditions both in terms of type of noise, and also the topic that is generally discussed.
- Males and Females often carry-on different conversations and differ significantly in acoustic properties.

Figure 1: Acoustic Environment Modeling

- To modulate these variations in the network's internal representation we extend the end-to-end speech recognition models^[2,3] to explicitly use location of microphone array, and gender of speaker.
- We generate one-hot gender, array, location ID and add them to decoder network as well as encoder network
- Interestingly the improvement of DialogModel models seemed to be dependent on the session/dialog. DialogModel worked better for S09, however, EnvModel worked better for S02. Shows that the 2 models are contrastive and model combination can help!
- We got considerable improvements over the end-to-end baseline and almost matched the LF-MMI TDNN model numbers without doing any new feature engineering, or data cleaning, or data augmentation.

 Table 1: WER Comparison

-		
Models	Dev	Eval
End-to-End baseline	94.7	N/A
LF-MMI TDNN	81.14	73.27
Our End-to-End model	82.08	71.82

• Experiment setup

• Dataset: provided beamformed data (40hrs x 6 arrays), without any extra

2. Dialog Context Modeling^[4]

• We extend the

Figure 2: Dialog Context Modeling

feature enhancement

83d input features, 45 char-level distinct outputs

Conclusions and Future work

- Our end-to-end ASR model obtained 12.6% absolute WER improvement and outperformed LF-MMI TDNN.
- Our model can be easily combined with other speech enhancement techniques, such as multi-array processing enhancement, or single-array enhancement via close-talk data, and expect further improvement.
- With better enhancement techniques and model combinations of our 2 contrastive systems we hope to close the gap between the best model and our e2e model.

References:

- I. J. Barker, S. Watanabe, E. Vincent, and J. Trmal, "The fifth CHiME Speech Separation and Recognition Challenge: Dataset, task and baselines," in Proceedings of the 19th Annual Conference of the International Speech Communication Association (INTERSPEECH 2018), Hyderabad, India, Sep. 2018.
- 2. S. Watanabe, T. Hori, S. Kim, J. R. Hershey, and T. Hayashi, "Hybrid ctc/attention architecture for end-to-end speech recognition," IEEE Journal of Selected Topics in Signal Processing, vol. 11, no. 8, pp. 1240–1253, 2017.
- 3. S. Watanabe, T. Hori, S. Karita, T. Hayashi, J. Nishitoba, Y. Unno, N.E.Y. Soplin, J. Heymann, M. Wiesner, N. Chen et al., "Espnet: End-to-end speech processing toolkit," arXiv preprint arXiv:1804.00015, 2018.
- 4. S. Kim, and F. Metze. "Dialog-context aware end-to-end speech recognition." arXiv preprint arXiv:1808.02171 (2018).