

Scaling Speech Enhancement in Unseen Environments with Noise Embeddings

Gil Keren¹, Jing Han¹, Björn Schuller^{1,2}

¹ZD.B Chair of Embedded Intelligence for Health Care and Wellbeing, University of Augsburg, Germany ²GLAM – Group on Language, Audio & Music, Imperial College London, UK

The challenge

Goal: speech denoising in unseen environments.

The real world contains a large variety of noises and environments. We cannot see all of them in training time.

The challenge

- Every environment or sound may dictate different denoising "rules".
- We need an adaptive model a model that changes its enhancement behavior based on the environment.

Additionally conditioning the model on a sample recording of the environment alone (no speech).

- A realistic setting: we can record a few seconds of the environment alone, before speech starts.
- Isolating the environment can help learning what frequency components to denoise.

Architecture

Architecture

Architecture

- To enhance well in unseen environments, we need to generalise to unseen points in the space of environments.
- We therefore consider a distribution over environments p(e), where environments are the data points.
- Given a large training sample from p(e), we may observe generalisation in the space of environments.

A recipe for generalizing to unseen categories (oneshot learning) [1]:

- Consider a distribution over categories p(c).
- Design a model that is conditioned on raw representations of categories c, not their id.
- Train the model with a dataset containing a large training sample from p(c).

[1] G. Keren, M. Schmitt, T. Kehrenberg, and B. Schuller, "Weakly supervised one-shot detection with attention Siamese networks," arXiv preprint arXiv:1801.03329, 2018.

- Audio Set: 16,784 different training noise environments (656 for validation and 740 for test).
- Librispeech: 360 hours of clean speech (5.4 hours for validation/test).
- Random mixing at training time with 0dB-25dB.
- The model is unlikely to see many example twice.

- Speech Recognition WER: Using a pretrained 'Deep Speech' system [1].

[1] A. Hannun, C. Case, J. Casper, B. Catanzaro, G. Diamos, E. Elsen, R. Prenger, S. Satheesh, S. Sengupta, A. Coates et al., "Deep speech: Scaling up end-to-end speech recognition," arXiv preprint arXiv:1412.5567, 2014.

Results

Test set results for unseen environments, speakers and utterances.

Method	WER [%]
Clean Speech	4.21
Noisy Speech	34.04
Log-MMSE [1]	35.38
Noise Aware [2]	25.30
No Embedding – 200 noises	21.51
No Embedding – 1000 noises	20.54
No Embedding – 16K noises	16.78
With Embedding	15.46

[1] Ephraim & Malah, IEEE Trans. Acoustics, Speech, and Signal Processing, 1985 [2] Seltzer et al., ICASSP 2013

Scaling Speech Enhancement in Unseen Environments with Noise Embeddings

Gil Keren, Jing Han & Björn Schuller

- Perceptual Evaluation of Speech Quality (PESQ): industry standard for objective voice quality testing.
- Segmental Signal-to-Noise Ratio (SegSNR).
- Log-Spectral Distortion (LSD).

Results

Test set results for unseen environments, speakers and utterances.

Method	PESQ	SegSNR	LSD
Clean Speech	-	-	-
Noisy Speech	2.59	7.02	0.94
Log-MMSE [1]	2.66	7.12	0.91
Noise Aware [2]	2.96	11.01	0.54
No Embedding – 200 noises	3.12	10.03	0.53
No Embedding – 1000 noises	3.13	10.00	0.52
No Embedding – 16K noises	3.25	11.71	0.48
With Embedding	3.30	12.99	0.45

[1] Ephraim & Malah, IEEE Trans. Acoustics, Speech, and Signal Processing, 1985 [2] Seltzer et al., ICASSP 2013

Scaling Speech Enhancement in Unseen Environments with Noise Embeddings

- A deep residual network performs better than an MLP.
- Scaling the number of training noise environments has a critical role.
- Explicitly embedding the noise further improves enhancement ability.
- Consistent across all SNRs.

Qualitative Evaluation

25 dB: Original:

- 20 dB: Original:
- 15 dB: Original:
- 10 dB: Original:
- 5 dB: Original:
- 0 dB: Original:

• Psychoacoustics motivated loss function: allow the model to focus on the important things.

• Embedding speakers for source separation.

• Embedding environments for audio localisation in beamforming.

• Exploring the embedding space.

Scaling Speech Enhancement in Unseen Environments with Noise Embeddings Gil Keren, Jing Han & Björn Schuller

Audio enhancement in unseen environments by:

Condition the model on learned environment embeddings:

 \rightarrow Learned adaptation to unseen environments.

Collecting a large training sample from the environments distribution

 \rightarrow Generalisation to unseen environments.

Contact: gil.keren@informatik.uni-augsburg.de