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The challenge 

Goal: speech denoising in unseen environments. 
 
 
 
 
The real world contains a large variety of noises and 
environments. We cannot see all of them in training 
time.  
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The challenge 

•  Every environment or sound may dictate different 
denoising “rules”. 

 
•  We need an adaptive model - a model that 

changes its enhancement behavior based on the 
environment. 
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An Additional Input 

Additionally conditioning the model on a sample 
recording of the environment alone (no speech). 
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An Additional Input 
 

•  A realistic setting: we can record a few seconds 
of the environment alone, before speech starts. 

•  Isolating the environment can help learning what 
frequency components to denoise. 
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Architecture 
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Generalising to unseen environments 

•  To enhance well in unseen environments, we need to 
generalise to unseen points in the space of environments. 

 
•  We therefore consider a distribution over environments 
𝑝(𝑒), where environments are the data points.  

•  Given a large training sample from 𝑝(𝑒), we may observe 
generalisation in the space of environments. 
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Generalising to unseen environments 

A recipe for generalizing to unseen categories (one-
shot learning) [1]: 
•  Consider a distribution over categories 𝑝(𝑐). 
•  Design a model that is conditioned on raw 

representations of categories c, not their id. 
•  Train the model with a dataset containing a large 

training sample from 𝑝(𝑐).  
 
[1] G. Keren, M. Schmitt, T. Kehrenberg, and B. Schuller, “Weakly supervised one-shot detection with attention Siamese 
networks,” arXiv preprint arXiv:1801.03329, 2018. 
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Datasets 

•  Audio Set: 16,784 different training noise 
environments (656 for validation and 740 for test).  

•  Librispeech: 360 hours of clean speech (5.4 
hours for validation/test).  

•  Random mixing at training time with 0dB-25dB. 
•  The model is unlikely to see many example twice. 
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Evaluation Metrics 

-  Speech Recognition WER: Using a pretrained ‘Deep 
Speech’ system [1]. 

[1] A. Hannun, C. Case, J. Casper, B. Catanzaro, G. Diamos, E. Elsen, R. Prenger, S. Satheesh, S. Sengupta, A. Coates 
et al., “Deep speech: Scaling up end-to-end speech recognition,” arXiv preprint arXiv:1412.5567, 2014. 
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Results 

Test set results for unseen environments, speakers and utterances. 
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Method WER [%] 

Clean Speech 4.21 

Noisy Speech 34.04 

Log-MMSE [1] 35.38 

Noise Aware [2] 25.30 

No Embedding – 200 noises 21.51 

No Embedding – 1000 noises 20.54 

No Embedding – 16K noises 16.78 

With Embedding 15.46 

[1] Ephraim & Malah, IEEE Trans. Acoustics, Speech, and Signal Processing, 1985      [2] Seltzer et al., ICASSP 2013 



Evaluation Metrics 

-  Perceptual Evaluation of Speech Quality (PESQ): 
industry standard for objective voice quality testing. 

-  Segmental Signal-to-Noise Ratio (SegSNR). 

-  Log-Spectral Distortion (LSD). 
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Results 

Test set results for unseen environments, speakers and utterances. 
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Method PESQ SegSNR LSD 

Clean Speech – – – 

Noisy Speech 2.59 7.02 0.94 

Log-MMSE [1] 2.66 7.12 0.91 

Noise Aware [2] 2.96 11.01 0.54 

No Embedding – 200 noises 3.12 10.03 0.53 

No Embedding – 1000 noises 3.13 10.00 0.52 

No Embedding – 16K noises 3.25 11.71 0.48 

With Embedding 3.30 12.99 0.45 

[1] Ephraim & Malah, IEEE Trans. Acoustics, Speech, and Signal Processing, 1985      [2] Seltzer et al., ICASSP 2013 



Results 

•  A deep residual network performs better than an 
MLP.  

•  Scaling the number of training noise environments 
has a critical role. 

•  Explicitly embedding the noise further improves 
enhancement ability. 

•  Consistent across all SNRs.  
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Qualitative Evaluation 

25 dB:    Original:    Enhanced:  
 

20 dB:    Original:    Enhanced:  
 

15 dB:    Original:    Enhanced:  
 

10 dB:    Original:    Enhanced:  
 

5 dB:      Original:    Enhanced:  
 

0 dB:      Original:    Enhanced:  
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Future Work and Applications 

•  Psychoacoustics motivated loss function: allow the 
model to focus on the important things. 

•  Embedding speakers for source separation. 

•  Embedding environments for audio localisation in 
beamforming. 

•  Exploring the embedding space. 
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Summary 

Audio enhancement in unseen environments by: 
•  Condition the model on learned environment 

embeddings: 
 à Learned adaptation to unseen environments. 

•  Collecting a large training sample from the 
environments distribution 

 à Generalisation to unseen environments. 
 
•  Contact: gil.keren@informatik.uni-augsburg.de 

 
 
 
 
 


