The Hitachi/JHU CHiME-5 system: Advances in speech recognition for everyday home environments using multiple microphone arrays

Naoyuki Kanda¹, Rintaro Ikeshita¹, Shota Horiguchi¹, Yusuke Fujita¹, Kenji Nagamatsu¹, Xiaofei Wang², Vimal Manohar², Nelson Enrique Yalta Soplin², Matthew Maciejewski², Szu-Jui Chen², Aswin Shanmugam Subramanian², Ruizhi Li², Zhiqi Wang², Jason Naradowsky², L. Paola Garcia-Perera², Gregory Sell²

Step-by-Step Improvements for Dev HITACHI Inspire the Next

JOHNS HOPKINS

[1] Naoyuki Kanda, Yusuke Fujita, Kenji Nagamatsu, Lattice-free state-level minimum Bayes risk training of acoustic models, Interspeech 2018.

[1] Naoyuki Kanda, Yusuke Fujita, Kenji Nagamatsu, Lattice-free state-level minimum Bayes risk training of acoustic models, Interspeech 2018.

JOHNS HOPKINS WHITING SCHOOL

Effect of data augmentation with baseline AM

Data			Data Augmentation			Training	Worn- Dev	Ref-Array- Dev
Worn	Array (Raw, CH1)	Array (BeamFormIt)	Speed & Volume	Reverb. & Noise(*)	Bandpass	Epoch		
L, R, L+R	1		~			4	44.05	79.65
L, R, L+R	1	1	✓			4	44.49	78.72
L, R, L+R	1 6	1 6	✓			4	48.92	78.51
L, R, L+R	1 6	1 6	✓	✓		2	45.82	77.26
L, R, L+R	1 6	1 6	~	~	~	1	45.37	76.31

(*) Reverb. & noise perturbation was applied only for worn microphone data.

Speed: 0.9, 1.0, 1.1
Volume: 0.125 – 2.0
Reverberation: Generate impulse responses of simulated rooms by image method.
Follow the settings of {small, medium}-size rooms in [1].
Noise: Add non-speech region of array data with SNR of {20,15,10,5, 0}
Bandpass: Randomly-selected frequency band was cut off.
(leave at least 1,000 Hz band within the range of less than 4,000 Hz)

[1] T. Ko, et al.: A study on data augmentation of reverberant speech for robust speech recognition, Proc. ICASSP, pp. 5220-5224, 2017.

[1] Naoyuki Kanda, Yusuke Fujita, Kenji Nagamatsu, Lattice-free state-level minimum Bayes risk training of acoustic models, Interspeech 2018.

HITACHI Inspire the Next

HITACHI Inspire the Next

JOHNS HOPKINS WHITING SCHOOL of ENGINEERING

HITACHI Inspire the Next

HITACHI Inspire the Next

Step-by-Step Improvements for Dev HITACHI Inspire the Next

JOHNS HOPKINS WHITING SCHOOL of ENGINEERING

- 3-class mixture: target, non-target, and noise $y_f(t) \sim \alpha_{tgt} \mathcal{N}_{\mathbb{C}} \Big(0, v_f^{tgt}(t) R_f^{tgt} \Big) + \alpha_{nontgt} \mathcal{N}_{\mathbb{C}} \Big(0, v_f^{nontgt}(t) R_f^{nontgt} \Big) + \alpha_{noise} \mathcal{N}_{\mathbb{C}} \Big(0, v_f^{noise}(t) R_f^{noise} \Big)$
- Mask estimation using EM Algorithm MVDR-based Beamformer

Higuchi, Takuya, et al. "Online MVDR beamformer based on complex Gaussian mixture model with spatial prior for noise robust ASR. " *IEEE/ACM Transactions on Audio, Speech, and Language Processing* 25.4 (2017): 780-793.

IOHNS HOPKINS

of ENGINEERING

HITACHI

Inspire the Next

1. Train mask estimation (ME) network [1][2]

by using mixture of speech (worn non-speaker-overlapped region) and noise (array non-speech region) in the training set

 J. Heymann, L. Drude, and R. Haeb-Umbach, "Neural network based spectral mask estimation for acoustic beamforming," in Proc. ICASSP, 2016, pp. 196–200.
H. Erdogan, J. R. Hershey, S. Watanabe, M. I. Mandel, and J. Le Roux, "Improved MVDR beamforming using single-channel mask prediction networks." in Proc. Interspeech, 2016, pp. 1981–1985.

3. Mask inference

Target speaker's mask is selected only if target speaker's output value is higher than all other non-targets values.

Example: P01(target) and P02(non-target)

Step-by-Step Improvements for Dev HITACHI Inspire the Next

JOHNS HOPKINS

of ENGINEERING

Language Modeling

- Recurrent neural network based word-LM
 - 2 layer LSTM with 512 nodes, 50% dropout
 - 512 dim embeddings
 - PyTorch implementation
- Official-LM: forward-RNN-LM: backward-RNN-LM
 - = 0.5 : 0.25 : 0.25

WER (%) for Dev set

	without RNN-LM	with RNN-LM
Single-array	56.40 <u>1.3% impr.</u>	55.15
Multiple-array	54.00 <u>1.6% impr.</u>	52.38

(*) Results with model combination and hypothesis deduplication

Step-by-Step Improvements for Dev HITACHI Inspire the Next WHITING SCHOOL

Hypotheses combination by N-best ROVER

- 6 AMs := CNN-TDNN-{LSTM, BiLSTM, RBiLSTM} x {3500, 7000} senones
- 2 Front-ends := Mask Network, CGMM
- 6 Arrays

We didn't select array, instead combined hypotheses from each array.

Step-by-Step Improvements for Dev HITACHI Inspire the Next

JOHNS HOPKINS WHITING SCHOOL of ENGINEERING

Same words were sometimes recognized for overlapped utterances

- Duplicated words with lower confidence were excluded from the hypothesis.
 - HD was applied after ROVER, so precise time boundary could not be used. Minimum edit distance-based word alignment was used to detect word duplication.

WER (%) for Dev set

Final results & Conclusion

without F			۷ without RN	VER (%) NN-LM / with RNN	t eval result	
Track	Sessi	on	Kitchen	Dining	Living	Overall
Single- array	Dev	S02 S09	66.37 / 65.13 55.89 / 55.24	56.79 / 55.42 55.94 / 54.37	50.89 / 49.54 51.57 / 50.15	56.40 / 55.15
	Eval	S01 S21	59.42 / 57.62 52.11 / 49.68	44.18 / 41.81 42.14 / 39.78	63.85 / 62.33 46.71 / 44.59	50.36 / 48.20
Multiple- array	Dev	S02 S09	61.05 / 59.31 51.87 / 50.64	54.56 / 52.96 52.46 / 50.69	50.47 / 48.95 52.48 / 50.46	54.00 / 52.38
	Eval	S01 S21	59.82 / 57.01 54.70 / 51.59	43.59 / 41.22 44.12 / 42.17	62.28 / 60.67 45.95 / 43.82	50.59 / 48.24

WER (%) without RNN-LM / with RNN-LM							
Track	Sessi	on	Kitchen	Dining	Living	Overall	
Single- array	Dev	S02 S09	66.37 / 65.13 55.89 / 55.24	56.79 / 55.42 55.94 / 54.37	50.89 / 49.54 51.57 / 50.15	56.40 / 55.15	
	Eval	S01 S21	59.42 / 57 62 52.11 / 49.68	44.18 / 41.81 42.14 / 39.78	63.85 / 62.33 46.71 / 44.59	50.36 / 48.20	
Multiple- array	Dev	S02 S09	61.05 / 59.31 51.87 / 50.64	54.56 / 52.96 52.46 / 50.69	50.47 / 48.95 52.48 / 50.46	54.00 / 52.38	
	Eval	S01 S21	59.82 / 57 01 54.70 / 51.59	43.59 / 41.22 44.12 / 42.17	62.28 / 60.67 45.95 / 43.82	50.59 / 48.24	

Array combination by ROVER worked well for dev, but not effective for eval set.

- Why? Different types of rooms? Speaker-array distance?
- Anyway, better array combination methods should be pursued.

Our contributions

- Multiple data augmentation
- 4-ch AM with Residual BiLSTM
- Speaker adaptive mask estimation network / CGMM-based beamformer
- Hypothesis Dedupulication
- Array combination by ROVER (found not effective for evaluation set)

Our results

- 48.2% WER for evaluation set
- 2nd ranked, with only 2.1 point difference to the best result

Thank you for your attention!

Appendix

Model	Input	Training	Worn-Dev	Ref-Array-Dev
Baseline	1ch	LF-MMI	45.37	76.31
CNN-TDNN-LSTM	1ch	LF-MMI	39.22	68.87
CNN-TDNN-BiLSTM	1ch	LF-MMI	40.04	68.42
CNN-TDNN-RBiLSTM	1ch	LF-MMI	39.21	67.46
CNN-TDNN-RBiLSTM	4ch	LF-MMI	n/a	64.54
CNN-TDNN-RBiLSTM	4ch	LF-sMBR [1]	n/a	64.25

[1] Naoyuki Kanda, Yusuke Fujita, Kenji Nagamatsu, Lattice-free state-level minimum Bayes risk training of acoustic models, Interspeech 2018.

Front-end for 1ch input	Front-end for 4ch input	Dev
BeamFormIt (= Baseline)	Raw	64.28
Raw	Raw	63.79
WPE	WPE	63.49
CGMM-MVDR	WPE	62.53
Speaker adaptive mask NN-MVDR	WPE	62.09

of ENGINEERING

Decoding

- Hypotheses combination by N-best ROVER
 - 6 AMs := CNN-TDNN-{LSTM, BiLSTM, RBiLSTM} x {3500, 7000} senones
 - 2 Front-ends := Mask Network, CGMM
 - 6 Arrays We didn't select array. Instead we combined hypotheses from each array.

WER (%) for Dev set

Thank you