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Step-by-Step Improvements for Dev
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Acoustic Model Training Pipeline
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[1] Naoyuki Kanda, Yusuke Fujita, Kenji Nagamatsu, Lattice-free state-level minimum Bayes risk training  of acoustic models, Interspeech 2018.
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Acoustic Model Training Pipeline
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Training Data for 1ch AM
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Data Data Augmentation

Training

Epoch

Worn-

Dev

Ref-Array-

Dev

Worn Array

(Raw, CH1)

Array 

(BeamFormIt)

Speed

& Volume

Reverb. & 

Noise(*) 

Bandpass

L, R, L+R 1 ✔ 4 44.05 79.65

L, R, L+R 1 1 ✔ 4 44.49 78.72

L, R, L+R 1 … 6 1 … 6 ✔ 4 48.92 78.51

L, R, L+R 1 …. 6 1 … 6 ✔ ✔ 2 45.82 77.26

L, R, L+R 1 … 6 1 … 6 ✔ ✔ ✔ 1 45.37 76.31

Effect of data augmentation with baseline AM

Speed: 0.9, 1.0, 1.1

Volume: 0.125 – 2.0

Reverberation: Generate impulse responses of simulated rooms by image method.

Follow the settings of {small, medium}-size rooms in [1].

Noise:  Add non-speech region of array data with SNR of {20,15,10,5, 0}

Bandpass: Randomly-selected frequency band was cut off.

(leave at least 1,000 Hz band within the range of less than 4,000 Hz)

(*) Reverb. & noise perturbation was applied only for worn microphone data.

[1] T. Ko, et al.: A study on data augmentation of reverberant speech for robust speech recognition, Proc. ICASSP, pp.  5220—5224, 2017.



© Hitachi, Ltd. 2018. All rights reserved.

Acoustic Model Training Pipeline
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4ch CNN-TDNN-RBiLSTM
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4ch CNN-TDNN-RBiLSTM
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4ch CNN-TDNN-RBiLSTM
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4ch CNN-TDNN-RBiLSTM
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Step-by-Step Improvements for Dev
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Complex Gaussian Mixture Model
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• Mask estimation using EM Algorithm        MVDR-based Beamformer
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• 3-class mixture: target, non-target, and noise

Higuchi, Takuya, et al. "Online MVDR beamformer based on complex Gaussian mixture model with spatial prior for noise robust ASR.
" IEEE/ACM Transactions on Audio, Speech, and Language Processing 25.4 (2017): 780-793.
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Mask Estimation Neural Network
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1. Train mask estimation (ME) network [1][2]

by using mixture of speech (worn non-speaker-overlapped region) 

and noise (array non-speech region) in the training set

2. Speaker adaptation

[1] J. Heymann, L. Drude, and R. Haeb-Umbach, “Neural network based spectral mask estimation for acoustic beamforming,” in Proc. ICASSP, 2016, pp. 196–200.
[2] H. Erdogan, J. R. Hershey, S. Watanabe, M. I. Mandel, and J. Le Roux, “Improved MVDR beamforming using single-channel mask prediction networks.” in Proc. 
Interspeech, 2016, pp. 1981–1985.

def gate(x):

if input.speaker == target_speaker:

return x

else:

return 0
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(*) we used only non-overlapped regions for adaptation
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Mask Estimation Neural Network

13

3. Mask inference

Target speaker’s mask is selected only if target speaker’s output value is higher 

than all other non-targets values.

ME net P01

X_mask P01

abs(STFT)

ME net P02

X_mask P02

gate

X_mask_tgt
If X_mask_P01 > X_mask_P02:   

X_mask_P01

else:

0

Example: P01(target) and P02(non-target)
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Step-by-Step Improvements for Dev
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Language Modeling

15

◼ Recurrent neural network based word-LM

– 2 layer LSTM with 512 nodes, 50% dropout

– 512 dim embeddings

– PyTorch implementation

◼ Official-LM: forward-RNN-LM: backward-RNN-LM
=     0.5   :      0.25             :      0.25

without RNN-LM with RNN-LM

Single-array 56.40 55.15

Multiple-array 54.00 52.38

(*) Results with model combination and hypothesis deduplication

WER (%) for Dev set

1.3% impr.

1.6% impr.
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Step-by-Step Improvements for Dev
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Decoding

17

◼ Hypotheses combination by N-best ROVER
– 6 AMs := CNN-TDNN-{LSTM, BiLSTM, RBiLSTM} x {3500, 7000} senones

– 2 Front-ends := Mask Network, CGMM

– 6 Arrays

We didn’t select array, instead combined hypotheses from each array.

Front-end1 AM1Array1 Hypothesis_1,1,1

Front-end1 AM2Array1 Hypothesis_1,1,2

Front-end2 AM5Array6 Hypothesis_6,2,5

… … … N-best
ROVER

Result

Front-end2 AM6Array6 Hypothesis_6,2,6
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Step-by-Step Improvements for Dev
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Hypothesis Deduplication (HD)

19

◼ Same words were sometimes recognized for overlapped utterances

◼ Duplicated words with lower confidence were excluded from the hypothesis. 
– HD was applied after ROVER, so precise time boundary could not be used. Minimum edit 

distance-based word alignment was used to detect word duplication. 

without HD with HD

Single-array 56.44 55.15

Multiple-array 53.69 52.38

WER (%) for Dev set

(*) Results with RNN-LM

P05
um          yeah
0.999999 0.858049

P08
can         i            help        with        um          yeah       that        looks       good
0.846968 0.847141 0.753396 0.637141 0.916266 0.498319 0.825501 0.841967 0.879865

1.3% impr.

1.3% impr.
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Final results & Conclusion

20
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Track Session Kitchen Dining Living Overall

Single-

array

Dev S02

S09

66.37 / 65.13

55.89 / 55.24

56.79 / 55.42

55.94 / 54.37

50.89 / 49.54

51.57 / 50.15
56.40 / 55.15

Eval S01

S21

59.42 / 57.62

52.11 / 49.68

44.18 / 41.81

42.14 / 39.78

63.85 / 62.33

46.71 / 44.59
50.36 / 48.20

Multiple-

array

Dev S02

S09

61.05 / 59.31

51.87 / 50.64

54.56 / 52.96

52.46 / 50.69

50.47 / 48.95

52.48 / 50.46
54.00 / 52.38

Eval S01

S21

59.82 / 57.01

54.70 / 51.59

43.59 / 41.22

44.12 / 42.17

62.28 / 60.67

45.95 / 43.82
50.59 / 48.24

Final Results

21

WER (%) 
without RNN-LM / with RNN-LM

Our best eval result
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Final Results

22

◼ Array combination by ROVER worked well for dev, but not effective for eval set.

– Why? Different types of rooms? Speaker-array distance?

◼ Anyway, better array combination methods should be pursued.

Track Session Kitchen Dining Living Overall

Single-
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Dev S02

S09

66.37 / 65.13

55.89 / 55.24

56.79 / 55.42
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50.89 / 49.54

51.57 / 50.15
56.40 / 55.15

Eval S01
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59.42 / 57.62
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44.18 / 41.81

42.14 / 39.78

63.85 / 62.33

46.71 / 44.59
50.36 / 48.20
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array
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54.56 / 52.96

52.46 / 50.69

50.47 / 48.95

52.48 / 50.46
54.00 / 52.38

Eval S01

S21

59.82 / 57.01

54.70 / 51.59

43.59 / 41.22

44.12 / 42.17

62.28 / 60.67

45.95 / 43.82
50.59 / 48.24

WER (%) 
without RNN-LM / with RNN-LM
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Conclusion

23

◼ Our contributions
– Multiple data augmentation

– 4-ch AM with Residual BiLSTM

– Speaker adaptive mask estimation network / CGMM-based 
beamformer

– Hypothesis Dedupulication

– Array combination by ROVER (found not effective for evaluation set)

◼ Our results
– 48.2% WER for evaluation set

– 2nd ranked, with only 2.1 point difference to the best result

Thank you for your attention!
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Appendix
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Comparison of AM Architectures
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Model Input Training Worn-Dev Ref-Array-Dev

Baseline 1ch LF-MMI 45.37 76.31

CNN-TDNN-LSTM 1ch LF-MMI 39.22 68.87

CNN-TDNN-BiLSTM 1ch LF-MMI 40.04 68.42

CNN-TDNN-RBiLSTM 1ch LF-MMI 39.21 67.46

CNN-TDNN-RBiLSTM 4ch LF-MMI n/a 64.54

CNN-TDNN-RBiLSTM 4ch LF-sMBR [1] n/a 64.25

[1] Naoyuki Kanda, Yusuke Fujita, Kenji Nagamatsu, Lattice-free state-level minimum Bayes risk training 

of acoustic models, Interspeech 2018.
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Comparison of Frontend Processing

26

Front-end for 1ch input Front-end for 4ch input Dev

BeamFormIt (= Baseline) Raw 64.28

Raw Raw 63.79

WPE WPE 63.49

CGMM-MVDR WPE 62.53

Speaker adaptive mask NN-MVDR WPE 62.09
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Decoding

27

◼ Hypotheses combination by N-best ROVER
– 6 AMs := CNN-TDNN-{LSTM, BiLSTM, RBiLSTM} x {3500, 7000} senones

– 2 Front-ends := Mask Network, CGMM

– 6 Arrays

AM Array Frontend Dev

1 1 MaskNet 62.09

6 1 MaskNet 58.79

6 1 MaskNet, CGMM 57.55

6 6 MaskNet, CGMM 55.08
(*) Results w/o RNN-LM

WER (%) for Dev set

Single-array

Multiple-array

We didn’t select array. Instead we combined hypotheses from each array.

Front-end1 AM1Array1 Hypothesis_1,1,1

Front-end1 AM2Array1 Hypothesis_1,1,2

Front-end2 AM6Array6 Hypothesis_6,2,6

… … …

N-best
ROVER

Result
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Thank you

28


