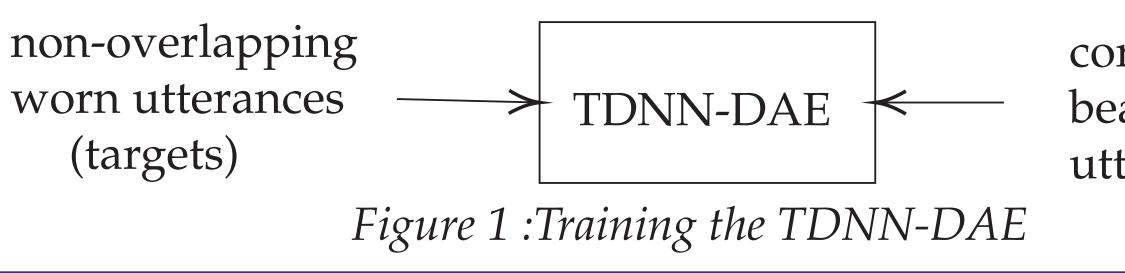
TATA CONSULTANCY SERVICES

T

ΤΛΤΛ

ABSTRACT


- Enhancing the beamformed utterances by using a Time Delay Neural Network De-noising autoencoder (TDNN-DAE).
- Trained the TDNN-DAE using non-overlapping speech worn microphone utterances (targets) and their corresponding beamform utterances.

BACKGROUND

- CHiME5 baseline [1] :
 - Trained using around 149k worn (binaural) microphone utterances and a random set of 100k utterances from the Kinect arrays.
 - WER for *dev_worn* = 71.62% for GMM-HMM acoustic model (tri3).
- Initial experiment :
 - Train tusing *train_worn* microphone utterances and test using dev_worn
 - WER improved to 67.15%
 - This performance improvement can be attributed to acoustic mismatch conditions between the worn and array microphones.

CONTRIBUTION

- We propose that an acoustic model trained by using only worn microphone utterances will perform better if the test data is acoustically similar to worn microphone data.
- A *beamform to worn* utterance TDNN-DAE [2] is trained using the Kaldi Toolkit [3].

REFERENCES

CHIME 2018 WORKSHOP: ENHANCING BEAMFORMED AUDIO USING TIME DELAY NEURAL NETWORK DE-NOISING AUTOENCODER Sonal Joshi, Ashish Panda, Meet Soni, Rupayan Chakraborty, Sunilkumar Kopparapu, NIKHIL MOHANAN, PREMANAND NAYAK, RAJBABU VELMURUGAN, PREETI RAO TCS INNOVATION LABS AND IIT BOMBAY

corresponding beamform utterances

EXPERIMENTAL EVALUATIO

TDNN-DAE architecture is similar to [2 network with four hidden layers is organ (-3,3)(-7,2)(0) and the input temporal cor

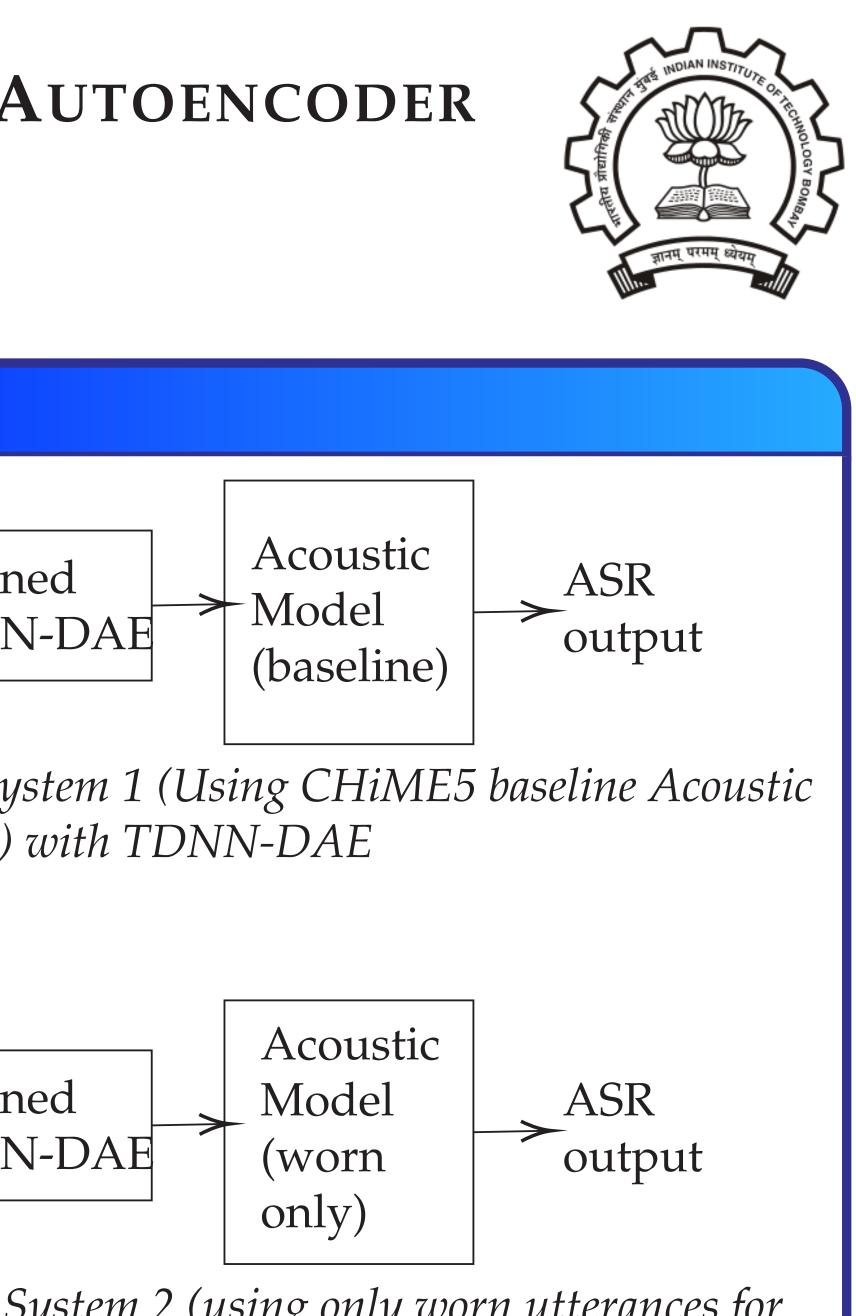
TDNN-DAE Training : 100k beamformed are their corresponding worn utterances.

Stage I: Obtain non-overlapping worn ut

Step 1 : Split all *train_worn* utterances into

> **Step 2 :** Each session is then the in ascending order of

> > **Step 3 :**


Find if the segment is non-If *N* utterances are indexed as then an utterance x(i) is not if start_time (x(i + 1)) does range start_time (x(i)) to en

Stage 2: Find mappings between beamfor ing the utterance transcriptions

- Utterance transcriptions are used to f corresponding to the above non-overlap
- A random set of 100k such mappings is DAE.
- The worn utterances act as targets for the target of tar ure 1).
- The development set after beamforming TDNN-DAE.
- We decode the enhanced utterances usi tem 1, Figure 2) and another ASR train ances (System 2, Figure 3).

[1] Barker et al. The fifth CHiME Speech Separation and Recognition Challenge: Dataset, task and baselines. In Interspeech, 20 [2] Peddinti et al. A time delay neural network architecture for efficient modeling of long temporal contexts. In Interspeech, 20 [3] Povey et al. The kaldi speech recognition toolkit. In *IEEE workshop on automatic speech recognition and understanding*, 2011.

DN	System								
 [2]. Contexts for the DAE anized as (-2,-1,0,1,2) (-1,2) ontext to [-13,9] ed segments and the targets s. 	dev/eval beamformed Trained Acoustic utterances Model (baseline) output Figure 2 : Block diagram of System 1 (Using CHiME5 baseline Acoust Model) with TDNN-DAE								
to different sessions	dev/e beam uttera	formed		Frain DNN	ned N-DAE	->	Acoı Mod (wor only)	el n	ASR output
he sorted of time	Figure 3 :		\mathbf{C}		System 2 odel) wi		\mathbf{U}		itterances for
	Result	S							
h-overlapping. is $i = 1, 2, 3,N$, con-overlapping is not lie in the ind_time $(x(i))$	The overall DAE is sho tems using sults for the location.	wn in TDNN	Table J-DAE	1 an E is s	d the o shown	overal in Ta	ll WE ble 2	ER(%) for 2. Table 3	both the sy
orm and worn segments us-			Track		System W		WE	ER	
		Sin	gle	Syste Syste	m 1 m 2	90.8 92.3	82 31		
find beamform utterances apping worn utterances. is used to train the TDNN-	Overall V	VER (%	Ľ	U	istems t using T			,	nent test set
			Tra	ick	Syste	em	WE	ER	
the TDNN-DAE (Refer Fig-		Sin	gle	Syste Syste	m 1 m 2	95.5 93.9	52 98		
sing the baseline ASR (Sys- ned using only worn utter-	Overall WER (%) for the systems tested on the development test set usin TDNN-DAE								
	Track	Sess	ion	Ki	tchen	Din	ing	Living	Overall
	Single	Dev	S02 S09			93.53 93.23		93.21 92.06	93.98
2018. 2015.	Results for the System 2 (using only worn utterances for Acoustic Mode with TDNN-DAE. WER (%) per session and location together with th overall WER.								

nd

sing