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Contribution

This work describes the LEAP system submitted to the CHiME-5 Automatic Speech Recognition (ASR)
challenge (Track A-1 i.e, single-array track).

1 System Description

1.1 System-A

• For this sub-system, the feature extraction is done using 40 dimensional mel-frequency filter bank
energies which are extracted using 25ms windows with a shift of 10ms (denoted as fbank ).

• The features are mean and variance normalized and are used in acoustic modeling.

• We use the same setup as described in the CHiME-5 baseline system [1] which uses both worn micro-
phone and beamformed audio for model training.

• The acoustic model used in this system is given in Fig. 1.
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Figure 1: The acoustic model used in the LEAP system consisting of CNN-TDNN-LSTM neural network. The model
is trained with chain training framework in Kaldi.

• The system consists of convolutional neural network front-end followed by time-delay neural network
(TDNN) layers.

• The output of the TDNN layers are fed to long-short-term memory network (LSTM) which outputs the
target senones.

• The model is implemented in Kaldi [2] and this is trained using the chain training framework [3].

1.2 System-B

• For this sub-system, the acoustic model described in Fig. 1 is used as it is.

• However, the spectrogram is derived using the multi-variate auto-regressive (MAR) model [4].

• These features are based on frequency domain linear prediction (denoted as FDLP) approach.

• The feature extraction module is shown in Fig. 2. These features are also 40 dimensional.

Figure 2: The feature extraction module based on multi-variate autoregressive modeling [4].

2 Results

The speech recognition results using baseline system (provided by [1]), System-A, System-B and com-
bined system (system combination using lattice combination performed using Kaldi) are given in Table 1.

Table 1: ASR results - word error rate (%) for various systems for single-array track.

System Dev-Worn Mic [Dev / Eval ]-Beamform

Baseline 48.0 81.3
System-A 44.1 75.8
System-B 45.5 77.4

Sys. Comb (A + B) 41.3 73.4 / 66.1

• The system for the evaluation is a combination of two sub-systems, one based on conventional mel
frequency features and second one based on the frequency domain linear prediction features.

• The combination result improves the baseline system absolutely by 8% in terms of word error rate on
the development data (beamformed baseline) and absolute 15 % on the evaluation data.
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