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System Overview (I)
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System Overview (II)
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System Overview (III)
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Implementation Platform

• The official Kaldi toolkit
• Features: MFCC features
• GMM-HMM acoustic model
• LF-BLSTM HMM acoustic model
• LF-CNN-TDNN-LSTM HMM acoustic model
• Model ensemble

• The CNTK toolkit
• LSTM-based single-channel speech separation models
• LSTM-based single-channel speech enhancement models

• Self-developed toolkit
• Beamforming
• CNN-HMM acoustic models
• LSTM language models
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WPE + Denoising (IVA, LSA)

• Blind background noise reduction as preprocessing
• Important to make the subsequent separation/beamforming working

• Step 1: Generalized Weighted Prediction Error (GWPE) [1]
• Step 2: Independent Vector Analysis & Back Projection (IVA-BP, N=M=4) [2]
• Step 3: Multichannel noise reduction using log-spectral amplitude (LSA) [3]
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[1] T. Yoshioka and T. Nakatani , “Generalization of multi-channel linear prediction methods for blind MIMO impulse 
response shortening “, IEEE TASLP, vol. 20, no. 10, pp.2707-2720, 2012.

[2] N. Ono, “Stable and fast update rules for independent vector analysis based on auxiliary function technique”, IEEE 
WASPAA, 2011, pp.189-192.

[3] I. Cohen, “Multichannel post-filtering in non-stationary noise environments,” IEEE TSP, vol. 52, no. 5, pp.1149-1160, 2004.
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Single-channel speech separation
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• Motivation of SS1 
• Using non-overlap data from oracle diarization information

• Problems of “non-overlap” data
• Insufficient

• Not pure

• More pure non-overlap data is necessary
• SS1 aiming at removing interference clearly with potential target distortions

• Separated target data by SS1 as the new non-overlap data

• Objective function of SS1

9

Y denotes input feature, X denotes learning target, IRM denotes network output

SS1



• Motivation of SS2
• Large speech distortions of target introduced by SS1 models 

• Aiming at better speech preservation for ASR task

• Target training data of SS2
• Using the separated target data by SS1

• More target data for SS2 training than that for SS1 training

• Objective function of SS2
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• Neural network architecture
• 2-layer BLSTM network
• 512 cells per LSTM layer

• Input features
• Log-power spectral features
• Frame-length: 32ms
• Frame-shift: 16ms

• Training data for each speaker-dependent model 
• Interfering speakers: other 3 speakers
• Simulated mixing data size: about 50 hours
• Input SNR: -5dB, 0dB, 5dB, 10dB
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Setup of SS1 and SS2



Single-channel speech enhancement

• Densely connected progressive learning for LSTM [1]
• Target data (or “clean data”)

• 40-hour preprocessed data by WPE+Denoising

• Noise data
• unlabeled segments of channel-1 in training sets filtered using ASR model

• Input SNR of training data: -5 dB, 0 dB, 5 dB
• Simulated training data size: 120 hours
• Architecture: the best configuration in [1]
• Objective function of the output layer in progressive learning

• Testing stage: channel-1 as the input 
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[1] T. Gao, J. Du, L.-R. Dai and C.-H. Lee, “Densely connected progressive learning for LSTM-based speech enhancement,”  
ICASSP 2018.



Beamforming

• DL-CGMM-GEVD source separation

• : the posterior probability of TF bin belong to source  
• Three sources: target speech, interfering speech, background noise
• Using mask outputs of SS/SE deep models to initialize CGMM parameters

• Extension of CGMM in [1] from 2 Gaussian mixtures to 3 Gaussian mixtures

• Well addressing the source order permutation problem 

• Two-pass array selection for multi-array track
• Selecting 3 arrays using SNR for SS model training (1-pass) and SINR for ASR tasks (2-pass)

• Fusing the recognition results of time-aligned 3 arrays via acoustic model ensemble
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[1] T. Higuchi, N. Ito, T. Yoshioka, and T. Nakatani, “Robust mvdr beamforming using time-frequency masks for online/offline 
asr in noise,” in ICASSP, 2016. 

[2] E. Warsitz and R. Haeb-Umbach, “Blind acoustic beamforming based on generalized eigenvalue decomposition,” IEEE   
TASLP, vol. 15, no. 5, pp.1529-1539, 2007.



Speech Demo
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Original, channel-1

WPE, IVA, LSA (dereverberation and denoising as preprocessing)

Official Beamforming (interfering male speaker is still existing)

Single-channel SS1 (good suppression of interference, large distortions of target)

Single-channel SS2 (worse suppression of interference, smaller distortions of target)

Beamforming with SS2 (the best trade-off)



Front-end (Official vs. Ours)
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Acoustic Data Augmentation

• Worn data:
• Left-channel + right-channel
• Data cleanup (as used in baseline system)
• Data size: 64 hours

• Far-field data:
• Preprocessed data (WPE+IVA+LSA) of all arrays
• Data cleanup
• Data size: 110 hours + 110 hours (after front-end)

• Simulated far-field Data:
• Calculating 1000+ RIRs using the recording pairs of worn and far-field
• Using RIRs and noise segments to simulate far-field data from worn data
• Data size: 250 hours

• Total training data: 534 hours
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Lattice-Free MMI [1] Based AMs

• LF-BLSTM
• 5-layer BLSTM network

• 40-d MFCC

• 100-d i-vector

• LF-CNN-TDNN-LSTM
• 2-layer CNN + 9-layer TDNN + 3-layer LSTM network

• 40-d MFCC

• 100-d i-vector
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[1] D. Povey, V. Peddinti, D. Galvez, P. Ghahremani, V. Manohar, X. Na, Y. Wang, and S. Khudanpur, "Purely 
sequence-trained neural networks for ASR based on lattice-free MMI", in Proc. Interspeech, 2016, pp.2751-2755.



Cross-Entropy Based AMs

• CNN1:
• CLDNN
• Input1: 40-d LMFB
• Input2: Waveform

• CNN2: 
• 50 layers deep fully CNN
• Input1: 40-d LMFB
• Input2: Waveform

• CNN3:
• 50 layers deep fully CNN with gate on feature map
• Input1: 40-d LMFB
• Input2: Waveform
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AMs with Our Best Front-end
• Ensemble via the state posterior average and lattice combination

• 5-model ensemble (LF-BLSTM, LF-CNN-TDNN-LSTM, CNN-Ensemble)
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Language Model

LSTM-LM (Forward) and BLSTM-LM (Forward-Backward) are combined
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LMs (Rank A vs. Rank B)
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LMs (Rank A vs. Rank B)
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Summary of Single-array
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Front-end and back-end 
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Our system is robust 
to evaluation set.



Summary of Multiple-array
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Summary: Details of Rank-A

26

Both systems of single-array and multiple-array are the best



Summary: Details of Rank-B
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Both systems of single-array and multiple-array are the best 



Take-Home Message
• Front-End

• Dinner party scenario is extremely challenging
• Most previous techniques in CHiME-4 are not working well 
• We design a solution to utilize both traditional and DL techniques

• Acoustic Model
• Data augmentation is important with contributions from front-end
• The new design of CLDNN achieves the best performance
• Different deep architectures are complimentary

• Language Model
• LSTM-LMs are not effective due to the limited training data

• Multiple-array
• Our proposed array selection is effective on the development set
• More analysis should be done on the evaluation set
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