

The USTC-iFlytek System for CHiME-5 Challenge

Jun Du

2018.09.07

@Hyderabad, India

Team

Jun Du (USTC)

Tian Gao (USTC)

Lei Sun (USTC)

Chin-Hui Lee (GIT)

Feng Ma (iFlytek)

Yi Fang (iFlytek)

k) Di-Yuan Liu (iFlytek) Qiang Zhang (iFlytek)

Xiang Zhang (iFlytek)

Hai-Kun Wang (iFlytek)

Jia Pan (iFlytek)

Jian-Qing Gao (iFlytek)

Jing-Dong Chen (NWPU)

System Overview (I)

Training Stage

System Overview (II)

Single-array Track Testing Stage

System Overview (III)

Multiple-array Track Testing Stage

Implementation Platform

- The official Kaldi toolkit
 - Features: MFCC features
 - GMM-HMM acoustic model
 - LF-BLSTM HMM acoustic model
 - LF-CNN-TDNN-LSTM HMM acoustic model
 - Model ensemble
- The CNTK toolkit
 - LSTM-based single-channel speech separation models
 - LSTM-based single-channel speech enhancement models
- Self-developed toolkit
 - Beamforming
 - CNN-HMM acoustic models
 - LSTM language models

WPE + Denoising (IVA, LSA)

- Blind background noise reduction as preprocessing
 - Important to make the subsequent separation/beamforming working

$$Y(t,f) = \left[G_1, G_2...G_N(t,f)\right] \mathbf{W}_{IVA-BP}(f) \mathbf{X}_{WPE}(t,f)$$

- Step 1: Generalized Weighted Prediction Error (GWPE) [1]
- Step 2: Independent Vector Analysis & Back Projection (IVA-BP, N=M=4) [2]
- Step 3: Multichannel noise reduction using log-spectral amplitude (LSA) [3]
- [1] T. Yoshioka and T. Nakatani , "Generalization of multi-channel linear prediction methods for blind MIMO impulse response shortening ", IEEE TASLP, vol. 20, no. 10, pp.2707-2720, 2012.
- [2] N. Ono, "Stable and fast update rules for independent vector analysis based on auxiliary function technique", IEEE WASPAA, 2011, pp.189-192.
- [3] I. Cohen, "Multichannel post-filtering in non-stationary noise environments," IEEE TSP, vol. 52, no. 5, pp.1149-1160, 2004.

Single-channel speech separation

Speaker-dependent Two-Stage Neural Network Based Speech Separation

SS1

- Motivation of SS1
 - Using non-overlap data from oracle diarization information
 - Problems of "non-overlap" data
 - Insufficient
 - Not pure
 - More pure non-overlap data is necessary
 - SS1 aiming at removing interference clearly with potential target distortions
 - Separated target data by SS1 as the new non-overlap data
- Objective function of SS1

$$Err = (\log(\widehat{IRM}) + \log(|Y|^2) - \log(|X|^2))^2$$

Y denotes input feature, X denotes learning target, IRM denotes network output

SS2

- Motivation of SS2
 - Large speech distortions of target introduced by SS1 models
 - Aiming at better speech preservation for ASR task
- Target training data of SS2
 - Using the separated target data by SS1
 - More target data for SS2 training than that for SS1 training
- Objective function of SS2

$$Err = (\widehat{IRM} - IRM)^2$$

Setup of SS1 and SS2

- Neural network architecture
 - 2-layer BLSTM network
 - 512 cells per LSTM layer
- Input features
 - Log-power spectral features
 - Frame-length: 32ms
 - Frame-shift: 16ms
- Training data for each speaker-dependent model
 - Interfering speakers: other 3 speakers
 - Simulated mixing data size: about 50 hours
 - Input SNR: -5dB, 0dB, 5dB, 10dB

Single-channel speech enhancement

- Densely connected progressive learning for LSTM [1]
 - Target data (or "clean data")
 - 40-hour preprocessed data by WPE+Denoising
 - Noise data
 - unlabeled segments of channel-1 in training sets filtered using ASR model
 - Input SNR of training data: -5 dB, 0 dB, 5 dB
 - Simulated training data size: 120 hours
 - Architecture: the best configuration in [1]
 - Objective function of the output layer in progressive learning

 $Err = (\widehat{IRM} - IRM)^2$

• Testing stage: channel-1 as the input

[1] T. Gao, J. Du, L.-R. Dai and C.-H. Lee, "Densely connected progressive learning for LSTM-based speech enhancement," ICASSP 2018.

Beamforming

DL-CGMM-GEVD source separation

- $\lambda_v(t, f)$: the posterior probability of TF bin belong to source v
- Three sources: target speech, interfering speech, background noise
- Using mask outputs of SS/SE deep models to initialize CGMM parameters
 - Extension of CGMM in [1] from 2 Gaussian mixtures to 3 Gaussian mixtures
 - Well addressing the source order permutation problem
- Two-pass array selection for multi-array track
 - Selecting 3 arrays using SNR for SS model training (1-pass) and SINR for ASR tasks (2-pass)
 - Fusing the recognition results of time-aligned 3 arrays via acoustic model ensemble
- [1] T. Higuchi, N. Ito, T. Yoshioka, and T. Nakatani, "Robust mvdr beamforming using time-frequency masks for online/offline asr in noise," in ICASSP, 2016.
- [2] E. Warsitz and R. Haeb-Umbach, "Blind acoustic beamforming based on generalized eigenvalue decomposition," IEEE TASLP, vol. 15, no. 5, pp.1529-1539, 2007.

Speech Demo

Beamforming with SS2 (the best trade-off)

Front-end (Official vs. Ours)

Results on development sets using the official baseline LF-TDNN system

Acoustic Data Augmentation

- Worn data:
 - Left-channel + right-channel
 - Data cleanup (as used in baseline system)
 - Data size: 64 hours
- Far-field data:
 - Preprocessed data (WPE+IVA+LSA) of all arrays
 - Data cleanup
 - Data size: 110 hours + 110 hours (after front-end)
- Simulated far-field Data:
 - Calculating 1000+ RIRs using the recording pairs of worn and far-field
 - Using RIRs and noise segments to simulate far-field data from worn data
 - Data size: 250 hours
- Total training data: 534 hours

Lattice-Free MMI [1] Based AMs

• LF-BLSTM

- 5-layer BLSTM network
- 40-d MFCC
- 100-d i-vector
- LF-CNN-TDNN-LSTM
 - 2-layer CNN + 9-layer TDNN + 3-layer LSTM network
 - 40-d MFCC
 - 100-d i-vector

[1] D. Povey, V. Peddinti, D. Galvez, P. Ghahremani, V. Manohar, X. Na, Y. Wang, and S. Khudanpur, "Purely sequence-trained neural networks for ASR based on lattice-free MMI", in *Proc. Interspeech*, 2016, pp.2751-2755.

Cross-Entropy Based AMs

- CNN1:
 - CLDNN
 - Input1: 40-d LMFB
 - Input2: Waveform
- CNN2:
 - 50 layers deep fully CNN
 - Input1: 40-d LMFB
 - Input2: Waveform
- CNN3:
 - 50 layers deep fully CNN with gate on feature map
 - Input1: 40-d LMFB
 - Input2: Waveform

wav	1, T*160	fbk	40, T				
conv	128,1,1025,1,16	conv	128,9,3,1,1 —	▶ channel_out,ke	ernel_h,ke	ernel_w, stride_h	, stride_w
relu		BN					
pow		relu			concat		
pool	128,1,20,1,10	pool	128,3,2,3,2	E	BLSTM	c1250 p350	
log		conv	256,7,3,1,1		FC	700,1,1,1,1	
reshape	128, T	BN			BN		
conv	64,15,3,1,1	relu			relu		
BN		conv	256,5,3,1,1	E	BLSTM	c1250 p350	
relu		BN			FC	700,1,1,1,1	
pool	64,3,2,3,2	relu			BN		
conv	96,7,3,1,1				relu		
BN		0	CLDNN	E	BLSTM	c1250 p350	
relu					FC	2048,1,1,1,1	
pool	96,3,1,3,1				BN		
conv	128,5,3,1,1				relu		
BN				d	deconv	512,1,2,1,2	
relu					FC	3936.1.1.1.1	
conv	128,5,3,1,1					0000,1,1,1,1,1	
BN					1033		
relu							19

AMs with Our Best Front-end

- Ensemble via the state posterior average and lattice combination
- 5-model ensemble (LF-BLSTM, LF-CNN-TDNN-LSTM, CNN-Ensemble)

Language Model

LSTM-LM (Forward) and BLSTM-LM (Forward-Backward) are combined

LMs (Rank A vs. Rank B)

Not significant due to too little training data

LMs (Rank A vs. Rank B)

Summary of Single-array

Summary of Multiple-array

Summary: Details of Rank-A

Track	Session		Kitchen	Dining	Living	Overall
Single	Dev	S02 S09	57.75 52.41	49.43 56.78	41.78 51.36	50.64
2111810	Eval	S01 S21	56.61 50.41	38.72 41.42	56.70 42.76	46.42
Multiple	Dev	S02 S09	46.27 46.11	46.05 48.61	41.15 50.45	45.65
	Eval	S01 S21	58.73 52.52	38.03 41.57	55.76 42.33	46.63

Both systems of single-array and multiple-array are the best

Summary: Details of Rank-B

Track	Session		Kitchen	Dining	Living	Overall
Single	Dev	S02 S09	57.41 51.83	48.52 56.38	41.49 51.08	50.20
2111810	Eval	S01 S21	56.26 50.16	38.26 41.44	56.47 42.37	46.11
Multiple	Dev	S02 S09	45.41 45.60	45.67 48.37	40.69 49.42	45.05
F = 2	Eval	S01 S21	58.08 52.47	37.11 41.11	55.07 42.20	46.14

Both systems of single-array and multiple-array are the best

Take-Home Message

- Front-End
 - Dinner party scenario is extremely challenging
 - Most previous techniques in CHiME-4 are not working well
 - We design a solution to utilize both traditional and DL techniques
- Acoustic Model
 - Data augmentation is important with contributions from front-end
 - The new design of CLDNN achieves the best performance
 - Different deep architectures are complimentary
- Language Model
 - LSTM-LMs are not effective due to the limited training data
- Multiple-array
 - Our proposed array selection is effective on the development set
 - More analysis should be done on the evaluation set

Acknowledgement

- JSALT 2017
 - Team: Enhancement and Analysis of Conversational Speech
- DIHARD Challenge (Interspeech 2018 Special Session)
- Inspiration for front-end design of CHiME-5 Challenge

Thanks Q&A