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Abstract
The 5th CHiME Speech Separation and Recognition Chal-
lenge (CHiME-5) [1] considers the problem of distant multi-
microphone conversational speech recognition in everyday
home environments. In this challenge, we take advantage
of several beamforming techniques, powerful TDNN-F [2]
acoustic models, pruned lattice-rescoring algorithm as well as
ROVER [3] based system fusion. Compared to the official base-
line, our best system achieves around 18% and 17% absolute
WER reduction on the development and test sets respectively.

1. Background
We participate in the CHiME5 single-array task, which uses
only reference array to recognize given utterances. Our pro-
posed system focuses on the following aspects:

• A multi-beamformer based front-end system which can
produce several kinds of enhanced speech as candidate
for back-end fusion;

• Acoustic modeling with semi-orthogonal low-rank ma-
trix factorization;

• Language rescoring technique with LSTM-TDNN struc-
ture and the ROVER based system fusion.

With the proposed system, we finally get 63.54% and 56.10%
WER on the official development and test sets respectively with
RNNLM rescoring.

2. Contributions
The overall framework of our system, which focuses on front-
end processing, data augmentation and acoustic modeling, is
given in Fig.1.

2.1. Front-end

Our front-end is mainly based on two beamforming methods:
a group of fixed beamformers [4] with sampled DoA (Di-
rection of Arrival) and WNG (White Noise Gain) constraint,
and the MVDR beamformer with estimated speaker indepen-
dent/dependent masks. We use IRM (Ideal Ratio Mask) and
MVDR (Minimum Variance Distortionless Response) beam-
forming in all our experiments.

For fixed beamformer, we set WNG constraint as 0dB and
sample DoA every 30 degrees. After that, as various candidate
results could be produced, we only keep several best results and
take them into the joint decoding (state level posterior average)
or system fusion stage.

For MVDR beamformer, we train neural networks to pre-
dict speaker dependent/independent (SI/SD) masks, which are
used for covariance matrices estimation. We use CNN-TDNN
structure to model SI-mask estimator and 3-layer BLSTMs

BeamformIt

DoA-X

SI-MVDR

SD-MVDR

worn(L&R)

Kit/Liv/Din

CNN-TDNNF-N

CNN-TDNNF-1

CNN-TDNNF-2

…
…

DoA-X

SI/CGMM-MVDR

SD-MVDR

BeamformIt

Data Augmentation

Acoustic models Front End

RNNLM & ROVER

Figure 1: System overview
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Figure 2: Data simulation for SD mask estimator training

for SD-mask estimator. Both of them use log mel-filterbank
(LMFB) as input features. For SI-mask training, we choose ut-
terances from close-talk dataset with lower WER across ses-
sions and estimate SI-masks via complex Gaussian mixture
model (CGMM) methods [5]. These CGMM masks are used as
targets during the training stage and corresponding far-field ut-
terance are used as the network input. For SD-mask models, we
prepare speaker and noise dataset first and then simulate mix-
ture data based on them (See Fig. 2). The speaker dataset comes
from non-overlap segments in the development/test set, which
could be automatically extracted according to the groundtruth.
The noise dataset comes from non-speaker segments on the
training set. We use a simple VAD to filter out silence segments.
Finally, we train SI-mask estimator on simulated mixture data
for each speaker independently with the same configurations.

2.2. Acoustic model

We use CNN-TDNN-F (19 TDNN-F layers following 1 CNN
layer) structures for acoustic modeling with 40-dimensional log
mel-filterbank (LMFB) features instead of the official MFCC.
LMFB features are fed into the CNNs directly and the output
of CNN is concatenated with 100-dimension online ivector be-
fore feeding into the following TDNN layers. We have trained
various acoustic models using different types of training data,
denoted as model {1∼ 5}, as shown in Fig. 1. All the acoustic



models are optimized using the lattice-free MMI criterion [6].

2.3. Language model

In order to further improve the recognition performance, we
use Kaldi-RNNLM tookit [7] to rescore the lattices from each
dependent system. According to our experiments, an LSTM-
TDNN structure with 3-order pruned lattice-rescoring algo-
rithm yields the best result with about 2% absolute WER re-
duction.

3. Experimental evaluation
3.1. Different architecture of acoustic models

Firstly, we have evaluated the performance of different acoustic
models trained with the official training data (worn/82.70h + far
field/54.64h). The experimental results on the development set
are shown in Tab. 1. By using the CNN-TDNN structures we
can achieve about 10% absolute improvement compared to the
official TDNN.

Table 1: Comparison of various acoustic models trained with
the baseline training data.

Acoustic model Feature Dev (WER%)
Official GMM-HMM MFCC 91.83

Official TDNN MFCC 80.11
Official TDNN LMFB 79.91

TDNN-F (11 layers) LMFB 75.34
1CNN+TDNN-F (15 layers) LMFB 73.16
1CNN+TDNN-F (19 layers) LMFB 72.61

3.2. Different training data

We have also investigated the impact of training data based on
CNN-TDNN-F structures. Tab. 2 shows the amount of train-
ing data we used for acoustic modeling. The official training
data set is composed of 64h worn data and 39h far field data
and we denote it as the baseline training set. For Model 1, we
add cleaned official beamforming data into the training set, and
get 2% absolute WER reduction. For Model 2, we add 20k
selected utterances which were processed with DoA-90 fixed
beamformer and get slightly better results. And we also train 3
models for each scenario (Living/Kitchen/Dining), which were
denoted as model 3∼5. For the training data of each model,
apart from far-field data recorded in the corresponding room,
worn data is also included. Tab. 3 shows the results on official
development data set.

Table 2: The details of the training data we used.

ID Data set Original (hr) Cleaned (hr)
1 Worn(L&R) 82.70 64.39
2 Far Field(All) 878.41 -
3 Far Field(Baseline) 54.64 39.26
4 DoA-90 25.89 15.68
5 Beamformit 219.60 147.78
6 Kitchen 55.04 35.78
7 Dining 55.04 37.25
8 Living 54.97 36.72

Table 3: Comparison of acoustic models trained with data aug-
mentation.

ID Training Data Dev(WER%)
Baseline 1+3 72.61
Model 1 1+3+5 70.49
Model 2 1+3+4 71.32

3.3. Different front-end methods

Based on the description in Section 2.1, we apply different
beamformers on the development data and results are shown in
Tab. 4. Joint decoding here means posterior level average tech-
nique, and we can give different weights to each beamformed
results. The acoustic model used has same the structures with
the baseline system. Compared with the official beamformit
method, our best single beamforming approach (SD-MVDR)
yields 2.3% absolute WER reduction. Tab. 5 shows the abso-
lute WER improvement for each speaker on the development
set.

Table 4: Result of different beamformer based on the baseline
AM

Methods WER %
Beamformit 82.40

CGMM-MVDR 81.08
SI-MVDR 80.82
SD-MVDR 80.02

DoA-X joint decoding 80.69
SI-MVDR + DoA-X joint decoding 80.05

Table 5: Absolute WER reduction for each speaker using SD-
MVDR

Speaker ID Impr(WER%)
P05 2.91
P06 2.52
P07 3.00
P07 3.62
P25 1.86
P26 2.17
P27 0.39
P28 2.39

3.4. System ensemble

Finally, we use ROVER technique to vote all the recognized
texts produced by multiple acoustic models on different beam-
formed speech. For Ranking A, we only use official N-gram
LM during decode stage, and for Ranking B, we use RNNLM
rescoring as in Section 2.3. At last, we achieve the lowest WER
of 65.17% and 63.54% on the development set for Ranking A
and B respectively. Results are summarized in Tab. 6 and Tab.
7.

3.5. Final results

Based on the description in Section 3.4, our final results on the
official development and test sets are reported in Tab. 8.



Table 8: Final results achieved by our best system

Track Ranking Dev (WER %) Test (WER %)

Single A 65.17 57.90
B 63.54 56.10

Table 6: Performance of the final system. (LM: N-gram)

Beamformer Model1 Model 2 Model{3∼5}
CGMM-MVDR 70.05% 70.80% 71.22%

DoA-105 69.67% 70.40% 70.72%
DoA-90 69.87% 70.62% 71.15%
DoA-60 69.66% 70.63% 70.94%

Beamformit 70.21% 71.07% 71.55%
SI-MVDR 68.83% 69.53% 70.07%
SD-MVDR 68.66 % 69.06% 69.57%

ROVER 65.17%

Table 7: Performance of the final system. (LM: RNNLM)

Beamformer Model1 Model 2 Model{3∼5}
CGMM-MVDR 68.25% 68.68% 69.08%

DoA-105 68.13% 68.43% 68.65%
DoA-90 68.13% 68.65% 69.25%
DoA-60 68.09% 68.64% 69.09%

Beamformit 68.50% 69.28% 69.48%
SI-MVDR 66.98% 67.39% 68.07%
SD-MVDR 66.91% 67.00% 67.63%

ROVER 63.54%
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