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Abstract
This paper presents an automatic speech recognition (ASR) sys-
tem for the 5th CHiME Speech Separation and Recognition
Challenge for transcribing continuous conversations recorded
in everyday environments with distributed microphone arrays.
The main contribution of the proposed system is the investiga-
tion of an effective real-time channel selection scheme to pick
up reliable microphones/array for target speakers. It is shown
that the proposed channel selection method produces better
ASR performance than the reference channel provided by the
baseline system, as well as comparable results to a reference-
required selection approach based on speech intelligibility test
as the oracle case. Instead of including all available data for
training data augmentation, channel selection can be also ap-
plied to the training data selection to minimize the training-test-
mismatch. Further, complementary knowledge can be obtained
when the best two channels are selected specially in periods of
overlapping speech. The final ASR system, which additionally
incorporates improved acoustic modeling and system combina-
tion, achieves absolute word error rate reductions of 9.2% and
7.0% with development and evaluation test set, respectively,
compared to the baseline in the context of multiple-array track.

1. Introduction
Systems that capture multiple audio streams using distributed
microphones are becoming increasingly common [1], e.g., dif-
ferent microphone arrays in mobile or TV devices, distributed
microphone arrays inside smart homes, etc. While distributed
microphones enable technologies like beamforming to exploit
spatial knowledge for speech enhancement, adding more chan-
nels is not guaranteed to improve automatic speech recogni-
tion (ASR) system performance. For instance, recent stud-
ies with distributed microphones (cf. [2]) show that ASR
performance in reverberant environments may even degrade
when some single streams that have high reverberation and
low signal-to-noise ratio (SNR) are included. Further, dis-
tributed microphones are required to be synchronized for proper
usage by microphone array or blind source separation tech-
niques, and the exact synchronization is itself quite challeng-
ing to achieve [3]. Therefore, strategies for the reliable micro-
phones/array selection are of great interest.

Several channel selection (CS) approaches for application
to ASR with distributed microphones have been proposed re-
cently on the basis of the common underlying principle: The
best channel should lead to the best performance, i.e., lowest
word error rate (WER) for ASR. However, since WER is un-
known during recognition in practice, an alternative measure
to select proper channels, therefore, needs to be as correlated
as possible with the ASR performance. Such a measure can
be achieved at different stages of the ASR system. In the sig-

nal domain, signal-to-noise ratio (SNR) estimation is possibly
the most widely used as the indication of signal quality for
CS [4], which however, requires accurate voice activity detec-
tion that often fails in reverberant or non-stationary noisy en-
vironments. To consider the reverberant conditions with dis-
tant microphones, [5] introduced an envelope-variance measure
based on the observation that reverberation smooths the time
sequence of speech energy values, so that the variance of the
compressed filter bank energies could reflect the degree of dis-
tortion (by reverberation), i.e., the highest energy for all sub-
bands as the least distorted channel. Further, these signal-based
approaches are specially meaningful for CS with distributed mi-
crophones to boost the computational efficiency of beamform-
ing [6]. However, as they do not consider any knowledge of the
ASR system, intuitively, one does not expect a high correlation
with WER.

When incorporating information of the ASR decoding pro-
cess (decoder-based measure), one straightforward method has
been proposed in [7], where the channel with the highest acous-
tic likelihood is considered as the best. However, due to the non-
normalized probability of the observation vector, likelihood, by
itself, is not a good indicator of the signal quality if signals are
coming from different channels. Alternatively, [8] presented a
feature normalization method that compares the ASR hypoth-
esis of original and normalized feature vectors for each chan-
nel, provided that normalization could compensate the distor-
tion caused by adverse acoustic conditions and the channel with
the smallest difference between the recognized word sequences
from the original and the compensated version is supposed to be
the best. Further, [9] introduced another CS method based on a
class separability measure, attempting to search for the channel
where the class separability measure is maximized. However,
the choice of the class units, e.g., speech features (signal-based),
phonemes or tri-phones (decoder-based) is not trivial. More-
over, CS has also been achieved from the perspective of con-
fidence measures [10] or ASR quality estimation [11]. These
decoder-based measures use some information from the ASR
decoder, which, in principle, should be more correlated with
the WER than the signal-based ones. On the other hand, an ev-
ident drawback of decoder-based measures is their significant
computational complexity.

Recently with the predominant use of deep neural net-
works (DNNs) in ASR back-end systems (cf. [12]), the analysis
of DNN posterior probability provides potential for new mea-
sures that correlate with ASR performance. Based on the ob-
servation that with a good match to the DNN model, the distri-
bution of phone posteriors will typically be dominated by clear
phone classes, the entropy of DNN phone posterior distribu-
tions can reflect the degree of mismatch between the test and
the training data, resulting in a strong correlation with the fi-
nal WER. This has been adopted for acoustic confidence mea-



sure [13] and for combination strategies in multi-stream ASR
framework [14]. A statistical analysis of phoneme posteri-
ors between the training and the test data has been conducted
in [15], where large divergence between these two statistics in-
dicates possible degradation of the classifier performance. A
mean temporal distance measure of phoneme posteriors was
further proposed in [16], based on the intuition that distant clean
posterior vectors will be rather different (since they are likely
to belong to different phoneme classes), while this difference
should be smaller for noisy vectors. Alternatively, autoencoders
have been employed in [17] to learn characteristics of the train-
ing data, and the reconstruction error obtained with test data
was used to monitor the performance of each channel. These
posterior-based approaches show the advantage of low compu-
tational complexity over decoder-based measures, meanwhile,
the correlation with the ASR performance increases compared
to signal-based ones, which also motivates this paper to apply
DNN posterior probability analysis to achieve CS in the context
of the 5th CHiME Challenge [18].

More specifically, the CHiME-5 Challenge considers the
problem of conversational speech recognition in a dinner party
scenario with four talkers and with six Microsoft Kinect de-
vices (each with a linear array of four microphones) distributed
in various positions in the kitchen, living and dinning room.
Although all 24 microphones could be employed, synchroniza-
tion between arrays itself is a challenging problem, meaning
that it is more convenient to treat each device independently. In
effect, recordings from Kinects which were not located in the
room where the speakers were talking exhibit high reverberation
and low SNRs, leading to a significant recognition degradation.
It is therefore of importance to dynamically select the proper
Kinect/channel for each active speaker to achieve the optimal
recognition result.

To this end, we exploit entropy analysis [13, 14] of the
DNN posterior probability for CS, which can be processed in
a frame-wise mode resulting in potentially real-time applica-
tions. Usually a good reference DNN model is necessary for a
distinguishable rank among channels: On one hand, this model
should reflect a strong correlation to the final ASR performance
— the best one will be chosen as the input for the ASR rec-
ognizer. On the other hand, discrimination in terms of DNN
posterior probabilities among channels should be as noticeable
as possible to avoid ambiguous selection, which could occur
when applying a DNN model with multi-condition training that
partially plays a role of equalization across channels with dif-
ferent conditions. Motivated by findings from pilot experiments
with CHiME-5 data that recorded speech signals from binaural
microphones worn by the party participants always yield the
best recognition results and that these recordings can be consid-
ered as homogeneous (i.e., under similar acoustic condition),
we therefore train the reference DNN model for CS only us-
ing the binaural speech data from Challenge training session.
In fact, using these signals as a reference, CS can be achieved
by a straightforward signal-based comparison, e.g., via a speech
intelligibility test [19] where the highest scoring channel is pre-
sumed likely to yield the best recognition score [20]. However,
when testing in real scenarios, it is not practical to obtain such
reference signals. Furthermore, in order to mitigate the problem
of overlapping speech which is not covered by the CS DNN
model (without speaker identification), the scheme will select
the best two channels/devices, motivated by the fact that in the
CHiME recordings there are usually two Kinects located close
to the active speakers, and their spatial diversity can provide
complementary evidence, particularly during speaker overlap.

In the reminder of this paper, we first briefly introduce the
system chain for CHiME-5 Challenge in Section 2 aiming at
reducing the final WER with the technologies ranging from
channel selection, over improved acoustic modeling to system
combination. The proposed channel selection approach is then
described in detail in Section 3. Overall experimental evalu-
ation with final submission results to CHiME-5 Challenge is
presented in Section 4, and Section 5 concludes the paper.

2. System Overview
As illustrated in Figure 1, the improvements compared to the
baseline conventional ASR [18] stem from the proposed chan-
nel selection approach, improved acoustic model (AM), and
combination strategy with complementary input. Note that
baseline BeamformIt [21] is applied as the speech enhance-
ment (SE) algorithm since other microphone-array methods we
tested (e.g., blind source separation [22]) could not achieve fur-
ther WER reduction.
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Figure 1: The proposed system chain for CHiME-5 Challenge.

2.1. Improved Acoustic Modeling

Besides the training data selection/augmentation (cf. Section 3)
and SE, acoustic model for conventional ASR systems can be
further improved in terms of robust feature extraction and ad-
vanced DNN architecture. Due to the conversational scenar-
ios with overlap speaker, it would be beneficial for ASR to in-
tegrate speaker-related knowledge into the feature extraction,
which is also verified by the performance improvement when
100-dimensional i-vectors are appended to the conventional 40-
dimensional mel-frequency cepstral coefficients (MFCCs) in
the baseline CHiME-5 Challenge system, as seen in Table 1.
In order to further capture speaker characteristics in the feature
domain, additional 3-dimensional pitch features [23] are em-
ployed including voicing probability, log-pitch and delta-pitch
values, which provide a small but consistent WER reduction
with the development test set (Dev).

Table 1: Performance with robust feature extraction including i-
vectors and pitch features appended to 40-dimensional MFCCs
in the context of baseline settings for Dev.

i-vector (#100) pitch (#3) WER

7 7 84.09
3 7 80.62
3 3 80.36

Further, motivated by the finding that it is beneficial to in-
clude long temporal contexts for DNN-HMM based AMs, i.e.,
to full exploit long-range correlations in the speech signals, ad-
vances in recurrent neural networks (RNNs) could be integrated
into the baseline neural network architecture, which applied a
chain model with time-delayed neural network (TDNN) [24].
Long short-term memory (LSTM) projected RNN [25]
is employed to further capture the temporal dynamics



from the input frames, resulting in TDNN hidden layers as
{0; (−1, 0, 1); 0; LSTM; (−1, 0, 1); 0; (−3, 0, 3); LSTM; (−3
, 0, 3); (−6,−3, 0); LSTM}, where neuron dimension in each
layer is 512 and the recurrent projection dimension in LSTM
layer is 128. Compared to the baseline using TDNN, WER
can be reduced by nearly 2.6% when LSTM is incorporated, as
summarized in Table 2.

Table 2: Performance with LSTM projected RNN integrated into
baseline TDNN architecture for Dev.

chain model WER

TDNN 80.62
LSTM-TDNN 78.04

2.2. Combination Strategy

Combination is an effective strategy in the ASR back-end for
achieving optimal transcription from different decoding streams
that carry complementary knowledge. In general, combina-
tion can be processed at the lattice level via score interpolation
(cf. [26]) when sharing the same AM (referred to as lattice com-
bination), or at the transcript level when results come from dif-
ferent AMs (system combination) which can be achieved using
minimum Bayes risk decoding [27].

Under the system chain in Figure 1, lattice combination is
applied to combine the selected channels from the proposed CS
approach (in the following section), provided that the first two
best-ranking channels contains complementary information in
terms of speakers in the signal domain. In contrast, system
combination takes account of different AMs trained with dif-
ferent speech data from scratch, and it is required to properly
choose these different but complementary systems in terms of
ASR front-ends, e.g., different SE algorithms, and/or back-ends
such as GMM incorporating DNN. According to the experimen-
tal results with different microphone channels and the combined
version using BeamformIt in Table 3, two modules (with and
without SE) are selected for system combination, assuming that
the system with the second microphone (CH2) of the selected
Kinect (without SE) could provide complementary recognized
results for system with SE.

Figure 2 shows the combination results compared to the sin-
gle system performance as well as the baseline, and both combi-
nation strategies are effective to further reduce WER by 2−3%.
It seems that 0.5 and 0.6 are good choices for the weight of the
first contribution system, i.e., 1st best channel and system with
SE, for lattice and system combination, respectively.

Figure 2: Performance of lattice and system combination
schemes with two contributing inputs for Dev. Dashed lines de-
note the baseline performance. Combination weights are varied
from 1 (equals to the 1st contributing system performance) to 0
(equals to the 2nd) with step size of 0.1.

Table 3: WERs for baseline system with Dev speech data from
worn microphone (left one) and reference Kinect array (4 mi-
crophones and SE when BeamformIt is used).

worn (L) SE CH1 CH2 CH3 CH4

47.22 80.62 80.89 80.63 80.94 80.97

3. Channel Selection
The available speech signals from the binaural microphone
worn by the party participants in the training set are used
to generate the DNN model for the proposed channel selec-
tion scheme, as illustrated in Figure 3. First, a hybrid DNN-
HMM AM is trained using only data from binaural microphones
(16 sessions, 32 speakers, 149456 utterances) under the base-
line DNN settings (cf. Section 2.1). The posterior probabil-
ity P (s, t) with s, t as state and frame index, respectively, is
then calculated by a DNN forward-pass, and the entropy E(t)
of P (s, t) is determined by

E(t) = −
∑
s

(P (s, t) · log2 P (s, t)) . (1)

It has been observed that high noise levels in P (s, t) (mis-
matched input to the reference DNN model) often increase the
entropy of DNN posterior distributions [13, 14]. Therefore,
channel selection can be achieved by ranking the entropy among
all candidate channels, i.e., argminc Ec(t) with c as channel
index, and the channel with lowest entropy is supposed to match
the most to the binarual speech signals, which will yield the
lowest WER. This is illustrated in Figure 3 where the posteriors
with the binaural test sample exhibit the lowest entropy value.

Usually single-frame decisions from E(t) are expected to
be noisy, and a temporal average/smoothing could result in a
more accurate entropy comparison. Although Figure 3 shows
that entropy could converge to saturation only within about 5
frames (150 ms) due to the inherent temporal context window
used in the reference model (with TDNN), a temporal averag-
ing over all frames of the test utterance (utterance-based pro-
cessing) is used. For comparison, a longer temporal averag-
ing window with 180 s (per speaker) is tested, which will work
will if the test session is fairly static so that the best channel
for each speaker does not change rapidly. Additionally, oracle
channel selection (with available binarual speech signals in Dev
as reference, but non-practical during testing in real scenarios)
is achieved by a straightforward signal comparison via an ob-
jective speech intelligibility test (STOI algorithm) [19] where
the highest scoring channel is presumed likely to yield the best
recognition score.

Table 4 summarizes the performance from the proposed
CS scheme with utterance-based and 180 s-based temporal
averaging. SE (BeamformIt) is applied to the available 6
Kinects/arrays, resulting in 6 candidate channels for selection,
and ref mic denotes the reference microphone array offered
by the baseline (according to the positions of the used Kinect
devices in each Session and Location during Challenge data
recording). It shows that ref mic is not the best channel for
speech recognition of active speakers, and there is room for
an improvement of around 3.5% WER reduction in compari-
son to the oracle selection, which emphasizes the importance
of channel selection in this distributed microphones/arrays sce-
nario. The proposed CS strategy outperforms the baseline by
around 2%, and the utterance-based CS performs better on av-
erage than the one with a longer temporal averaging window
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Figure 3: The processing chain of the proposed channel selection (CS) approach, i.e., training the DNN model, forward-run to obtain
the posterior probabilities, posterior entropy calculation per frame, and temporal averaging across frames.

Table 4: WERs with channel selection on Dev data (2 Sessions
and 3 Locations) in the context of baseline acoustic model. Six
Kinects/arrays with SE are used as candidate channels for se-
lection.

CS Session Kitchen Dining Living Overall

Baseline S02 86.50 78.89 78.64 80.62
(ref mic) S09 81.39 79.60 76.65

Oracle S02 76.50 78.31 72.82 76.18
(STOI) S09 78.58 77.19 76.60

180 s S02 84.80 79.26 76.42 79.51
-based S09 80.27 79.29 76.60

Utterance S02 83.16 79.21 75.21 78.85
-based S09 79.55 78.65 77.96

(180 s), indicating that the best channel w.r.t. active speaker is
not static enough in the test scenarios on average and CS with
low latency is preferred.

Additionally, Figure 4 shows the selection decisions for
each utterance in Dev from different CS methods. It can be
clearly observed that compared to the oracle results by STOI al-
gorithm, one ref mic per session or location is not sufficient in
the Dev test scenario due to multiple active speakers and the dy-
namic/natural talking style, e.g., body and head moving, point-
ing directions, etc. The proposed CS method seems to be capa-
ble of efficiently and effectively selecting the reliable channel
which yields (close to) the best ASR performance.

On the other hand, the proposed CS does not always guar-
antee an improvement for all considered sessions, e.g., the two
specific sessions ‘S02 Dining’ and ‘S09 Living’ in Table 4 (bold
text). It seems that the problem in session ‘S09 Living’ can be
solved by using a longer temporal averaging window for en-
tropy ranking, as shown by the improved performance achieved
using 180 s based CS method. It is also of interest to note that
there exists no significant recognition improvement in this ses-

Figure 4: The channel selection label for each utterance in Dev.

sion, i.e., only 0.05% WER reduction can be achieved even by
the oracle algorithm, mainly because session ‘S09 Living’ is rel-
atively static without position changes of the active speakers.

However, this does not hold for ‘S02 Dining’, since no im-
provement can be observed when comparing utterance-based
to 180 s based CS. It seems that many ambiguous selections
(similar entropy values among channels) occur in session ‘S02
Dining’ probably due to the non-diversely distributed Kinects
in this session (cf. released floorplans), leading to potentially
different best channel for different speaker. Note that the DNN
model in the proposed CS method (cf. Figure 3) can not dis-
criminate different speakers well when solely relying on the
posterior knowledge. In order to circumvent this disadvantage,
the 2nd best channel that is supposed to carry complementary
knowledge w.r.t. different speakers is included to support the
best channel through a lattice combination strategy (cf. Sec-
tion 2.2). As shown in Table 5, the 1st best channel exhibits
the best performance for the two male speakers, while the 2nd
best channel is beneficial to female speakers. These respective
advantages can be preserved by lattice combination, resulting
in a further 2% WER reduction on average compared to single
channel selection.
Table 5: WERs with two selected best channels from utterance-
based CS method for Session ‘S02 Dining’ in Table 4.

CS Speakers

P05(f) P06(m) P07(m) P08(f)

Baseline 88.34 71.00 75.20 90.03

1st best 88.52 70.16 75.20 93.72
2nd best 88.15 71.07 75.80 90.40
Combine 86.00 66.09 73.57 90.04

Furthermore, besides the processing in the test stage, the
proposed channel selection can be performed in the training
stage to minimize the typical training-test-mismatch effect.
Usually, data augmentation in training data improves the gen-
eralization during DNN training to further reduce WER. On the
other hand, too much mismatched data introduced into the train-
ing data might degrade the final ASR performance. As shown
in Table 6, it seems that it is a good compromise when inte-
grating Kinects’ data with 1st and 2nd best rankings chosen by
the proposed CS method into binaural speech signals to con-
struct the training set, rather than randomly choosing 100 K
utterances from Kinects’ signal as in the baseline system. Note
that the proposed CS approach considers the input after SE, and
the selection results are directly applied to the system without
SE (i.e., CH2), due to their very similar ASR performance (po-
tentially) resulting in similar entropy ranking in terms of CS
DNN model.



Table 6: WERs for CS (only) performing on training data selec-
tion from Kinects’ signals in addition to binaural signals (L+R
with 149456 utterances in total) from worn microphones. If SE
is applied, it is applied for both training and Dev data.

Training set SE CH2

Baseline (100 K: random) 80.62 80.63

CS (74728: 1st best) 79.92 80.35

CS (149456: 1st+2nd best) 79.42 79.40

CS (1598909: all Kinects) 80.83 -

Table 7 further summarizes the ASR performance when CS
processing on both training and test data. As a result, 4.5%
absolute WER reduction over baseline can be achieved by the
proposed CS scheme.

Table 7: WERs for CS performing on both training and Dev.

Training Test SE CH2

Baseline ref mic 80.62 80.63
Baseline Oracle (STOI) 76.18 -

Oracle (STOI) Oracle (STOI) 74.82 -

CS 1st best 77.40 78.03
CS 1st+2nd best CS 2nd best 80.12 80.56

Combine 76.17 76.79

4. Overall Evaluation
Table 8 summarizes the results for different subsystems tested
on Dev. It shows that using channel selection for creating a
new set of training data can bring 1.2% absolute improvement.
A further 3.1% WER reduction can be achieved by integrating
LSTM network as well as pitch features. System combination
provides additional 2.7% WER reduction, resulting in a total
7% absolute ASR improvement for the single-array track. In
the multiple-array track, channel selection can be applied to se-
lect the best two channels, and it is verified that the best channel
outperforms the reference channel by nearly 2% when compar-
ing ‘M1’ to baseline. More importantly, the selected two chan-
nels do carry complementary information, as proved by approx-
imately 2% improvement after lattice combination. After sys-
tem combination, an overall 9.23% absolute WER reduction is
achieved.

As listed in Table 9 with detailed WERs per session and
location, consistent improvement (except for ‘S09 Living’ with
0.9% degradation) can be observed in Dev by the proposed CS
scheme from single- to multiple-array track, indicating that the
proposed CS scheme is effective to exploit the potential diver-
sity gain from the distributed Kinect devices, and the most sig-
nificant improvement (nearly 3.5%) contributed by CS is at-
tributed to sessions ‘S02 Kitchen’ and ‘S09 Dining’. When the
final evaluation set (Eval) is tested, a similar improvement trend
can be observed in single-array track in comparison to baseline,
whereas some biased situations occur when CS is applied to
multiple-array track. In particular, WER increases by more than
3.5% in sessions ‘S21 Dining’ and ‘Living’, leading to the over-
all WER increasing by 1% compared to single-track case. This
could be partly explained by the observation from floorplans
of Eval that there always exists only one nearest Kinect device
during dinner party, which can not provide diversity gain for

improvement in terms of channel selection in comparison to the
given reference channel that could be already the best channel.

5. Conclusions
This paper presented an effective channel selection approach
based on the entropy analysis of the neural network posterior
probabilities, which was used to choose the reliable acoustic
channel for ASR systems to yield the potentially best recog-
nition results with distributed microphone arrays. Compared
to the reference-required oracle channel selection by a speech
intelligibility measure, the proposed algorithm has exhibited
comparable reliability for channel selection with further advan-
tages of reference-free and frame-based processing mode that
are of great interest for real-time applications. Experimental re-
sults in the context of the development test set in the CHiME-5
Challenge showed that 3.5% word error rate reduction could
be achieved by the proposed channel selection when applied to
multiple-array track from single-array scenarios. However, this
advantage is not fully transferable to the evaluation test set due
to the lack of spatial diversity gain. More detailed analysis is
required to characterize the situations in which the approach is
likely to be beneficial.
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