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Abstract
In this paper, we describe our systems and report our results
for the CHiME-5 single-array track. We focus on front-end
multi-channel speech processing, including beamforming and
dereverberation. To address the complexity of the data and
recording scenario, we use multiple beamformers where each
beamformer targets at a predefined direction. N-Best lists are
obtained from decoding each beamformed signal. These mul-
tiple N-best lists are further processed by ROVER to get the
final result. Before beamforming, a multi-channel generalized
weighted prediction error method is adopted to do the derever-
beration. Comparing with the official baseline system, CNN-
TDNN-F shows significant improvement. In language mod-
eling, LSTM-based language model re-scoring generates addi-
tional improvement. Without system fusion, our single system
can get 14.4% relative word error rate reduction on development
set over the baseline system.

1. Background
For CHiME-5, we participate in the single-channel track. Our
system focuses exclusively on multi-channel signal process-
ing techniques, including dereverberation and beamforming.
Therefore not much effort is spent on system fusion with var-
ious advanced acoustic models. Data augmentation and LSTM
based language model (LM) re-scoring are used to improve the
system performance.

2. System Description
2.1. Multi-channel dereverberation

The performance of speech recognition systems and the effec-
tiveness of beamforming methods are degraded in reverberant
environments. Many beamforming techniques rely on accu-
rate estimation on the direction of arrival (DOA). However, re-
verberation makes it difficult to estimate DOA accurately. In
our system, the generalized weighted prediction error (GWPE)
[1] algorithm is used to do dereverberation before beamform-
ing. As a multiple-input multiple-output method, GWPE is able
to preserve the DOA information. Hence it can be applied to
multi-channel signals before beamforming.

2.2. Multiple beamformers with ROVER

In our system, we propose to use multiple beamformers and
each of them focuses on one specific direction, where fixed
beamforming (FB) with a constraint for white noise gain
(WNG) [2] is applied. We design 5 FBs focusing on 60, 90,
120, 150 and 180 degree respectively. Apart from 5 FBs, com-
plex Gaussian mixture model based MVDR (CGMM-MVDR)

beamforming, which has been proved to be effective in previous
work [3, 4], is also applied to provide the 6th speech stream.

As mentioned earlier, it is difficult to estimate accurate
DOA, and hence it is hard to choose the best beamformed sig-
nal from the 5 FBs and the CGMM-MVDR signal. Instead of
choosing one best from the 6 signals, we decode the 6 beam-
formed signals in parallel, each generating an N-Best list. Then,
SRILM [5] ROVER [6] toolkit is applied to get the final result
out of the 6 N-best lists. Figure 1 shows the flowchart of our
multiple beamforming system.

Figure 1: Flowchart of ROVER over multiple beamformed out-
puts.

2.3. Data augmentation

Data augmentation is a very directive and effective approach
to improve the robustness of the acoustic model. On one hand,
data augmentation can cover more data types, on the other hand,
it can also alleviate the mismatch between training and test data.
In our system, in order to further eliminate the distortion in-
troduced by our front-end processing techniques, we also do a
simple data augmentation during training. First, we randomly
choose 22000 (22k) utterances from the training set and apply
dereverberation using GWPE. Then, we generate 44k new en-
hanced training data by enhancing the randomly selected 22K
utterances using FB90 and CGMM-MVDR beamforming tech-
niques respectively. Finally, we augment the official training
data (worn data + 100k far-field data) with the 44k enhanced



data.

2.4. Acoustic model

A factored form of time delay neural network (TDNN-F) in-
troduced by [7] is used as our acoustic model (AM). Consider-
ing the noisy data, we add an extra CNN layer before TDNN-F.
Compared with the official TDNN model, this AM structure can
get better performance. For TDNN-F, we follow the configura-
tion in the Kaldi [8] recipe.

2.5. LSTM language model

The language model is built based on a high-rank LSTM lan-
guage model [9] with several optimization and regularization
methods [10]. The high-rank LSTM language model uses
a mixture of softmaxes (MoS) to make the softmax layer in
LSTM language model more expressive. Similar to conven-
tional LSTM language model [11, 12, 10], a sequence of hid-
den states is obtained after processing the input sequence over
a stack of recurrent layers. On top of the hidden states, the
MoS represents the conditional distribution of current word as
weighted sum of different softmax layers.

3. Experimental evaluation
We only participate in the single array track. In this section, our
single array results are reported.

3.1. Different acoustic models

In our work, we compared two different acoustic model struc-
tures, the official TDNN acoustic model and our CNN-TDNN-F
model. Table 1 compares two different AM architectures, both
using the official beamforming method (Beamformit) and the
official training data, where the TDNN result is the official base-
line result given by the challenge official website. CNN-TDNN-
F gives significant improvement in this task. Therefore we will
report results based on this CNN-TDNN-F acoustic model for
the rest of the paper.

Table 1: WER (%) on the dev set, using the official training data
and Beamformit

Track Acoustic model WER

Single TDNN 81.30
CNN-TDNN-F 75.91

3.2. Deverberation and multiple beamformers

Next we apply our multiple beamformers to the test speech, be-
fore sending it to be decoded by the CNN-TDNN-F model. Ta-
ble 2 shows that without deverberation the proposed multiple
beamformers followed by ROVER can reduce WER to 72.54%.
When GWPE dereverberation is applied before beamforming,
we get another 1% WER reduction. In all ROVER cases in Ta-
ble 2, the official 3-gram LM is used to generate 10-best per
speech stream. That is, 60 hypotheses per utterance are com-
bined by ROVER in this table.

3.3. Data augmentation

Next, we add 44k utterances of enhanced speech into the official
training data, as described in section 2.3. Although we add only

Table 2: WER (%) on the dev set using different front-ends on
the CNN-TDNN-F model

Dereverb Beamformimg WER
No Beamformit 75.91
No Multi beamformers 72.54
Yes Multi beamformers 71.56

44k enhanced utterances, we are able to obtain almost 1% WER
reduction, as shown in Table 3.

Table 3: WER (%) of data augmentation on the dev set

Dereverb Beamforming Augmentation WER
Yes Multi beamformers No 71.56
Yes Multi beamformers Yes 70.68

3.4. ROVER with LSTM LM N-Best lists

Finally we use our MoS LSTM LM to rescore the lattices gen-
erated by the official 3gram LM, and then dump another 10-
best for each speech stream. Hence we obtain a new set of 60
hypotheses for each test utterance, from the LSTM nbest lists.
Together with the original 60 hypotheses, the 120 hypotheses
are then combined by ROVER to output the final hypothesis.
Table 4 shows the WER drops to 69.57% when LSTM 10-best
lists are added into ROVER.

Table 4: WER on the dev set via ROVER before vs. after adding
the LSTM nbest lists

N-Best WER
from 3-gram LM only 70.68

+LSTM LM 69.57

3.5. Results for the best system

Table 5 shows the breakdown WERs of our best system. Living
room environment seems to be a bit easier than kitchen and din-
ning room. On development set, from 81.30% to 69.57%, we
get 14.4% relative improvement. On evaluation set, we reduce
the WER to 68.71%.

Table 5: Results from the best system. WER (%) per session and
location together with the overall WER.

Track Session Kitchen Dinning Living Overall

Single
Dev S02 79.72 69.83 64.58 69.57S09 68.97 68.43 64.14

Eval S01 80.98 61.75 78.50 68.71S21 73.73 58.88 65.15

4. Conclusions
In this paper, we described our systems for CHiME-5 challenge.

• On the front-end signal processing, combining GWPE
dereverberaton and multiple beamformers with N-Best
ROVER gave significant improvement.

• On acoustic models, CNN-TDNN-F significantly im-
proved over the standard TDNN backend.



• On language models, LSTM language model rescoring
was used to further reduce the WER.

Our best system achieved 69.57% and 68.71% WER on devel-
opment and evaluation sets.
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