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ABSTRACT

The National Digital Switching System Engineering and
Technological R&D Center (NDSC) speech-to-text
transcription system for the 2018 CHiME-5 is described.
The time delay neural network (TDNN) and TDNN-long
short term memory recurrent neural network (TDNN-LSTM)
systems are trained using deep bottleneck features (BNF).
Since the audio recordings from parallel worn microphone
are available, the third system is trained, in which the
alignments of audio recordings from Kinect device are
generated from worn microphone audio recordings. At last,
the minimum Bayes risk (MBR) combination was utilized to
combine different systems and reduce WER further. The
WER of our system on develop dataset is 74.61%, leading to
a 6% absolute reduction comparing with the base-line
system.

Index Terms— speech recognition, CHiME challenge,
bottleneck feature, parallel data, Kaldi

1. INTRODUCTION

This paper describes the development of NDSC speech-to-
text transcription systems for the 2018 CHiME challenge1
[1]. CHiME-5 challenge considers the problems about
distant microphone conversational speech recognition in
home environments. Speech data are composed of twenty
home parties in real home environments. Each party
conversation has two participants acting as hosts and two
acting as guests. Each session which lasted at least two
hours was recorded by 6 distant microphone arrays with 4
microphones each and 4 binaural microphones worn by each
participant.

The challenge includes single-array and mutiple-array.
For each track, it has two separate rankings. Ranking A is
focused on conventional acoustic model and official
languages model, which means that the lexicon and
language model can not be changed compared to the
baseline system. while B is include all other systems and the
lexicon and language model can be changed. The system

1 http://spandh.dcs.shef.ac.uk/chime_challenge/
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addressed in this paper is single-array and corresponds to
ranking A.

Different architectures of deep learning based acoustic
model are trained. The time delay neural network (TDNN)
[3] and TDNN-long short term memory recurrent neural
network (TDNN-LSTM) [4][5] are trained using bottleneck
features (BNF) [6]. Because of the audio recordings from
parallel worn microphone are available, another TDNN is
trained, in which the alignments are generated from worn
microphone audio recordings[7][8]. All systems were
trained by utilizing the Kaldi speech recognition toolkit [2].
Lattice-based minimum Bayes risk (MBR) combination
method was utilized to combine different systems and
reduce WER further [9].

The outline of this paper is as follows. Section 2
describes the related techniques used in our systems. A
detailed description of the NDSC transcription system is
given in Section 3. Section 4 presents the performance of
our systems on the evaluation dataset, and conclusions are
drawn in Section 5.

2. RELATED WORK

In this section, we present a brief introduction to acoustic
models, language models, system combination used in our
transcription.

2.1. Acoustic Models

With the development of speech recognition, deep neural
networks (DNN) [10][11] with outstanding modeling
capabilities and superior feature representations are widely
applied. Among all kinds of DNNs, TDNN is particularly
suitable for speech recognition as speech materials are
difficult to segment precisely [12]. TDNN is known as a
precursor to convolutional neural networks (CNN) [13][14],
which utilized in speech recognition can date back to 1987.
Despite lack of affine transform in the initial layer, the
TDNN can model long-term temporal dependencies from
short-term input speech features for the temporal
resolutions that TDNN operates at increases from layer to
layer by performing temporal convolution. To speed up the
TDNN training and reduce the model size the sub-sampling
processing can be used under the assumption that



neighboring activations are correlated [15]. Moreover,
performance gain will be get by setting higher frame rate at
the lower layers while the computational efficiency can be
still preserved.

Though recurrent neural network (RNN) [16] have a
powerful advantage for long contextual information
representations, the traditional RNNs encounter the gradient
exploding or vanishing problems when being trained by the
stochastic gradient descent (SGD) algorithm [17]. While the
LSTM RNN is proposed to alleviate this problem.
Compared with the traditional RNN, in LSTM linear
recurrent connections are used instead of non-linear ones in
the conventional RNN, which lead to more smooth back
propagation of gradients. Moreover, Combining TDNN
layers and LSTM layers reduces WER further, comparing
with the LSTM model.

2.2. Bottleneck Features

Because neural nets can compress the input features and
classify the features, BNF are typically extracted by training
a DNN with a middle bottleneck layer, which concludes
fewer nodes comparing to layers below or above it. BNF
can be considered as a low dimensional vector compressed
by the information about phonetic class and phonetic
context [18]. The recognition performance is confirmed to
be improved significantly by utilizing BNF.

2.3. Parallel Alignment Training

For the speech data from distant microphones are known as
degraded, far-field speech recognition [19] is a tough task.
To improve the far-field speech recognition performance,
the DNN based acoustic models can be trained using the
time-synchronize parallel data, e.g., the simultaneously
collected worn microphone and distant microphone speech
data, which can reduce the mismatch between systems
trained on clean speech from worn microphones and noisy
speech from distant microphone[20]. Most of the methods
can be grouped into two categories. One of the categories,
using all the data from different environment to train the
models is named multi-condition training. Another category
is environment-aware training which uses the environment
features as auxiliary information features. The environment
features are extracted from worn microphone and distant
microphone data.

2.4. System Combination

To obtain better recognition results, system combination
which utilizes the complementarities of different systems
has been used in various speech processing tasks. The main
combination methods include one-best-based combinations
such as recognizer out voting error reduction (ROVER) and
lattice-based combinations such as MBR combination. MBR
combination is a lattice-based system combination under the
MBR decoding framework. In this method, a further
improve can be get by merging the lattices from different

systems into one topology and then decoding the merged
lattice.

3. THE DEVELOPED SYSTEM

3.1. Data Used

The 5th CHiME challenge used audios from 20 parties in
different home with a total duration of 50 hours, which have
been split into training, development set and evaluation test
sets. Each session is composed of the recordings made by
the binaural microphone worn by participants and by 6
microphone arrays with 4 microphones each.

The training data are composed of left and right channel
of binaural microphone data and a subset of all distant
microphone data. We use 100 thousands and 1 million
distant utterances training the systems, respectively. The
system K1 and K2 will performance better when the subset
number of utterances is 100 thousands according to the
results, and the system K3 is 1 million.

The approach of muti-channel speech enhancement,
similar to CHiME 4 recipe [21], is using a weighted delay-
and-sum beamformer (BeamformIt) [22], which is the same
with the baseline system.

3.2. ASR Systems

3.2.1. BNF-TDNN

To extract 80-dimensional BNF and 320-dimensional BNF,
two TDNNs were trained respectively. 40-dimensional Mel-
frequency cepstral coefficients (MFCCs), appended with a
100-dimensional i-Vectors, are used as input. The TDNN
has 8 hidden layers, and the 8th hidden layer is set as
bottleneck layer with 80 or 320 nodes. The model
configuration of TDNNs is shown in Table 1.

Layer Extracting BNF TDNNs
Context Layer-type dimension

1 [-2,-1,0,1,2] LDA
2 - TDNN 512
3 [-1,0,1] TDNN 512
4 - TDNN 512
5 [-1,0,1] TDNN 512
6 - TDNN 512
7 [-3,0,3] TDNN 512
8 [-3,0,3] TDNN 512
9 [-6,-3,0] TDNN 80/320

Table 1.the model configuration of TDNN used for extracting BNF

The TDNN for recognition which has 8 hidden layers
with 512 units in each layer uses 80-dimensional BNF and
320-dimensional BNF respectively. The WER of system
with different BNF is shown in Table 2. The system with
80-dimensional BNF has a lower WER comparing to the
system with 320-dimensional BNF. The reason for this
result probably is that the 80 dimensional BNF are more
abstract and have more powerful ability of classification.



The training data are made up of all worn microphones
data and a subset of all distant microphone data. We use
100 thousands and 1 million distant utterances training the
systems, respectively. As the result shown in Table 2, the
system with 80-dimensional BNF utilizing 100k distant
utterances performs better. Because of the distant data with
strong noise, the system using overmuch distant utterances
may fit the noise in the data. That is probably why using less
distant utterances performs better.

Track BNF dim utterances NN Type %WER

Single

Baseline 100k TDNN 81.28
80 100k BNF-TDNN 78.91
320 100k BNF-TDNN 79.01
80 1m BNF-TDNN 80.59

Table 2.the %WER of systems on different training data

3.2.2. BNF-TDNN-LSTM

The method of extracting BNF is the same with 3.2.1. The
number of the subset of distant data used for training is 100k.
The input of neutral network is 80-dimensional BNF
without cepstral truncation, spliced across n ( n may be 1
or 2) frames of context, and appended with a 100-
dimensional i-vectors. The model configuration of TDNN-
LSTM is shown in Table 3. The context in this table is in
terms of the splicing indices, e.g. ‘[-1, 0]’ means the input to
the current layer at a given time step t is a spliced version of
previous layer outputs at times t-1 and t. LSTMP means
projected LSTMs. This model has TDNN layers with an
output dimension of 1280 and LSTM layers with cell
dimensions of 1024. The WER of the system on dev dataset
is 77.11%, which is shown in Table 5 and leads to a total
reduction in WER of 1.8% absolute over the BNF-TDNN
model.

Layer TDNN-LSTM
Context Layer-type

1 [-1,0,1] LDA
2 [-1,0] TDNN
3 [0,1] TDNN
4 [-1,0] TDNN
5 [0,1] TDNN
6 [-3,0] TDNN
7 [-3,0] TDNN
8 [0,3] LSTMP
9 [-3,0] TDNN
10 [-3,0] TDNN
11 [0,3] LSTMP
12 [-3,0] TDNN
13 [-3,0] TDNN
14 [0] LSTMP

Table 3.the model configuration of TDNN-LSTM

3.2.3. Parallel alignment training

Both TDNN and TDNN-LSTM are trained. The alignments
of audio are generated from the worn microphone audio
recordings. 40-dimensional MFCCs, appended with a 100-
dimensional i-Vectors, are used as input. The number of the
subset of distant data used for training is 1 million. The

TDNN has 8 hidden layers with 512 relu units in each layer.
The model configuration of TDNN is the same with the
baseline system. The TDNN-LSTM model is the same with
the model in 3.2.2. Table 4 compares the WER between
TDNN and TDNN-LSTM system. Generally, comparing to
TDNN, TDNN-LSTM system performs better with enough
data. But in our experiment the TDNN system performs
better than TDNN-LSTM. We speculate that it may be
caused by insufficient data.

Track utterances NN Type %WER

Single 1 million TDNN 76.00
1 million TDNN-LSTM 78.61

Table 4.The %WER of TDNN and TDNN-LSTM system

3.2.4. MBR combination

The MBR combination is utilized in decoding. The system
B1 is a combination of K1 and K2 with the weight of K1 is
0.4. The system B2 is combined by B1 and K3, and the
weight of B1 is 0.4. The results of systems are shown in
Table 5. Compared with the system K1 and K2, the
combined system B1 has a 3% absolute reduction in WER.
The system B2 which is combined with B1 and K3 has a
2.5% absolute reduction in WER.

Track System NN Type %WER

Single

Baseline TDNN 81.28
K1 BNF-TDNN 78.91
K2 BNF-TDNN-LSTM 77.11
K3 Parallel alignment 76.00
B1 K1 + K2 76.43
B2 B1 + K3 74.61

Table 5.The %WER of systems on development dataset

4. PERFORMANCE ON EVALUATION DATASETS

Track Session %WER
Kitchen Dining Living Overall

Single
Dev S02 83.78 73.68 71.83 74.61S09 73.06 72.77 69.07

Eval S01 77.75 60.18 76.77 67.31S21 72.89 59.50 63.34

Table 6. per session and location %WER together with the
overall %WER

The system performance on development and evaluation
dataset in different condition is shown in Table 6. The
system used for recognition is system B2. We observe that
the performance is the best in the dining room and the
worst in the kitchen, which is probably caused by the noise
interference and the speakers movement. The WER of
system B2 on evaluation dataset is 67.31%.

5. CONCLUSION

This paper describes the structure and development of
NDSC speech-to-text transcription system for the CHiME-5



challenge. Different architectures of deep learning based
acoustic model as well as parallel alignment training and
MBR combination have been evaluated. The WER of the
combined system is 74.61%, which leads a 6% absolute
reduction comparing with the base-line system.
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