
DA-IICT/IIITV System for the 5th CHiME 2018 Challenge

Ankur T. Patil1, Maddala V. Siva Krishna2, Mehak Piplani2, Pulikonda Aditya Sai2,
Hardik B. Sailor1, Hemant A. Patil1

1Speech Research Lab, Dhirubhai Ambani Institute of Information and Communication Technology
(DA-IICT), Gandhinagar-382007, Gujarat, India.

2Indian Institute of Information Technology (IIIT), Vadodara, Gujarat, India.
ankur patil@daiict.ac.in, 201551045@iiitvadodara.ac.in, 201551072@iiitvadodara.ac.in,
201551013@iiitvadodara.ac.in, sailor hardik@daiict.ac.in, hemant patil@daiict.ac.in

Abstract
This paper presents our work on end-to-end (E2E) system de-
velopment for multiple array track in the CHiME-5 challenge
2018. In particular, we propose to use E2E Lattice Free Maxi-
mum Mutual Information (LF-MMI) for acoustic modeling. For
front-end, Mel Frequency Spectral Coefficients (MFSC) and
Power Normalized Spectral Coefficients (PNSC) features are
used. We employ delay-and-sum beamformer for speech en-
hancement of training and development data. The Recurrent
Neural Network Language Model (RNNLM) rescoring is also
explored along with 3-gram language model. Our E2E LF-MMI
Time Delay Neural Network (TDNN) system performed better
than the E2E system provided in the challenge with an absolute
reduction of 10.95 % in WER. The final system combination
further reduces the WER to 78.63 %. Hence, our proposed sys-
tem combination captures complementary information due to
various E2E systems trained on full training data, beamformed
data and using MFSC and PNSC features, respectively.

1. Introduction
Among the applications of robust ASR, voice command in do-
mestic environments has attracted much interest recently, due
in particular to the release of Amazon Echo, Google Home,
Microsoft Cortana and other devices targeting home automa-
tion and multimedia systems. The performance in the robust
ASR is significantly improving to due to advancement in signal
processing, machine learning (and deep learning), speech en-
hancement and natural language processing (NLP) techniques
[1] and availability of speech corpora in real noisy environ-
ment. The CHiME challenges and corpora along with DICIT,
Sweet-Home, and DIRHA corpora have been significantly con-
tributed in this area of research as these corpora contains the
noisy speech signals in domestic environment. The difficulty
level of the recognition task goes on increasing from CHiME-1
to CHiME-5 challenge. CHiME speech separation and recog-
nition challenges aims to draw together the source separation
and speech recognition communities as the source separation
problems are inherent in the distant speech recognition.

Novelty of the CHiME-1 challenge corpus compared to pre-
vious available corpus is that the utterance to be recognized
were provided in continuous audio background rather than
as pre-segmented utterances thus allowing the range of back-
ground techniques to be employed [2]. CHiME-1 challenge
was a small vocabulary recognition task and have fixed room
impulse response. These limitations are overcame in CHiME-2
challenge by introducing the speaker movement and extending
the corpus for medium vocabulary task [3]. The CHiME-3 chal-
lenge has considered speech recognition on a multi-microphone

tablet device being used in noisy everyday environments [4].
CHiME-4 challenge uses same dataset as CHiME-3. However,
it increases the level of difficulty by constraining the number
of microphones available for testing [5]. The CMiME-5 chal-
lenge considers the problem of distant multichannel conversa-
tional ASR in everyday home environments with realistic noisy
scenarios [6]. In this paper, we discuss about the our system
implementation for CHiME-5 challenge.

The conventional hybrid DNN-HMM system is considered
as the state-of-the-art in the distant multichannel ASR. Re-
cently, there is a surge of developing end-to-end (E2E) ASR
systems that can directly learn a mapping from an observa-
tion sequence to a target symbol. Various approaches to de-
sign E2E systems have been proposed, namely, Connection-
ist Temporal Classification (CTC) [7], attention-based [8], and
RNN-transducer approach [9]. CTC is pioneering approach in
E2E speech recognition which uses sequence level objective
function. The limitation of CTC is that it fail to model the
inter-dependencies at the output if output sequence is longer
than the input sequence. However, RNN transducer extends
the CTC defining the distribution over the output sequences
of all lengths, and by jointly modeling both input-output and
output-output dependencies. Attention based model belongs to
the family of encoder-decoder models where encoder network
maps the variable length input sequence to fixed length output
sequence, represented by bottleneck features. These models re-
quires very large data for the ASR system training. However,
till now E2E ASR system does not perform well compared to
the hybrid DNN-HMM system. In [10], authors recently pro-
posed E2E ASR using Lattice Free Maximum Mutual Informa-
tion (LF-MMI) and showed that it achieved comparable results
to the hybrid LF-MMI DNN-HMM system.

The objective of this paper is to show the significance of
E2E LF-MMI acoustic modeling for the CHiME-5 challenge.
Specifically, we applied beamforming in the training, develop-
ment, and evaluation set. The Mel Frequency 1Spectral Coef-
ficients (MFSC) and Power Normalized Spectral Coefficients
(PNSC) features were used for acoustic modeling [11]. We
also compared the performance of 3-gram and RNNLM rescor-
ing. Our final system combination experiments significantly im-
proved the performance in the CHiME-5 task.

2. E2E LF-MMI Multichannel ASR System
The E2E model aims to train the neural-network-based acoustic
model in one stage, i.e., without relying on alignments, building
trees, or performing prior estimation [12, 10]. Among the sev-

1Here, Spectral coefficients refers to filterbank coefficients.



eral end-to-end approaches, we used recently proposed Lattice
Free Maximum Mutual Information (LF-MMI) method [10].
The objective function in this approach is maximum mutual
information (MMI) in the context of Hidden Markov Models
(HMM). MMI is a discriminative objective function E which
aims to maximize the probability of the reference transcription,
while minimizing the probability of all other transcriptions [10]:

E =

N∑
n=1

log
fλ(x(n)|Hw(u))

fλ(x(u))

where λ is the set of all HMM parameters, N is total number
of training utterances, and x represents speech utterance with
corresponding transcription w. Hw(u) is all possible state se-
quences pertaining to transcription w(u). The denominator can
be approximated as,

fλ(x(n)) =
∑
w

fλ(x(n)|Hw) ≈ fλ(x(n)|Hden)

where Hw is called as denominator graph that includes
all possible sequences of words. Whereas, Hw(u) is called
as numerator graph. Using traditional method, computation
of denominator graph was time consuming. In LF-MMI ap-
proach, they adopted few techniques to perform the denomina-
tor computation on GPU hardware. In regular LF-MMI context-
dependent modeling is performed using tied biphone or tri-
phone, where tying is done according to context-dependency
tree. This prerequisite is removed in E2E LF-MMI approach
by using monophones or full biphones. Composite HMM is
used in the numerator graph instead of a special acyclic graph
as in regular LF-MMI training. So, there is no restriction on
self-loops in composite HMM to provide more freedom for the
neural network to learn the alignments. Phone language model
is estimated for the denominator graph using the training tran-
scription. Context-dependency is implemented as a trivial full
biphone tree. The detailed discussion on E2E LF-MMI model
is given in [10].

We used two DNN architectures, namely, Time-Delay Neu-
ral Networks (TDNN) [13], and Long Short-Term Memory
(LSTM) along with TDNN (TDNN-LSTM) [14]. To model the
sequential data, such as time series, speech, etc., RNN is the first
choice. The most effective and popular sequence models are
used in the practical applications called as gated RNNs which
include the LSTM [15]. The LSTM model is based on introduc-
ing self-loops to produce the paths, where the gradient can flow
for a longer duration. Using the gate controlled by the hidden
unit, the time scale of integration can be changed dynamically
[15]. Another DNN architecture which has been shown to be
effective in modeling the long range temporal dependencies is
the TDNN proposed in [13]. In TDNN, initial layers learn rep-
resentations using narrow context whereas higher layers learn
wider context [13]. TDNN is one of the best performing sys-
tems tested in the Kaldi toolkit for various ASR task. We also
used TDNN-LSTM system which is recently proposed to get
advantages of both TDNN and LSTM models [14].

3. Experimental Setup
3.1. Database and Challenge Tracks

The database consists of the recording of twenty separate din-
ner parties taking place in real homes. These parties have
been divided into disjoint training, development, and evaluation
sets. The training, development, and evaluation data consists

Figure 1: Block diagram of LF-MMI E2E multichannel ASR
system.

of 40:33, 4:27, and 5:12 hours of corpus recorded in 16, 2, and
2 parties with 32, 8, and 8 speakers having 79980, 7440, and
11028 utterances, respectively. More details about the CHiME-
5 database is provided in [6, 16].

The challenge features two tracks, namely, single array and
multiple array. For each track, two rankings are produced.
Ranking-A focuses on acoustic robustness only while ranking-
B addresses all aspects of the task. We have developed system
for multiple array which comes under ranking-B.

3.2. Pre-processing

The overall block diagram for the proposed approach is shown
in Fig. 1. We have used the speech signals from all devices
for given system development. Beamforming is performed on
each device for training and development data [17]. We used
delay-and-sum beamformer (BeamformIt toolkit [18]) applied
on four microphone signals attached to reference array. It also
reduces the size of training data by combining the signals from
four channels to single enhanced signal. Features are extracted
from each enhanced signal using a window length of 25 ms and
shift of 10 ms. Feature extraction includes the use of Mel Fre-
quency Spectral Coefficients (MFSC) and Power Normalized
Spectral Coefficients (PNSC) with 40-D filterbank. We have
also explored the ∆ and ∆∆ features.

3.3. Acoustic and Language Modeling

For acoustic modeling, we built LF-MMI based E2E system
with TDNN and TDNN-LSTM architectures. The TDNN-
based systems consist of 8 hidden layers with 2048 neurons per
layer. The TDNN-LSTM-based systems consist of 7 TDNN and
3 LSTM layers with 1024 neurons per layer. The projection di-
mension of LSTM is 512 neurons. The L2-regularization of
0.01 is applied in the hidden layers of both TDNN and TDNN-
LSTM systems. For the softmax output layer, L2-regularization
of 0.0025 and 0.004 is used for TDNN and TDNN-LSTM sys-
tems, respectively.

The 3-gram LM was built using the training text in the
CHiME-5 challenge [19]. We have also built RNNLM us-
ing Kaldi-RNNLM toolkit which uses an importance-sampling
based method to speed up training, and applies a new method to
train unnormalized probabilities [20]. To build RNNLM, The
embedding dimension of RNNLM is 1024. All the E2E ASR
systems are trained in the Kaldi toolkit [21].

With possible combinations of speech enhancement tech-
nique, feature representations and DNN architectures for E2E
system, we built several systems (S1-S5) using LF-MMI objec-
tive function. The specification of these systems is summarized
in Table 1. The speech enhancement technique is applied to
the training data for S2-S5 systems. We also used ∆ and ∆∆
features for these systems. The system S1 was built from the



speech signals from all channels and all devices training data
without speech enhancement technique applied and using 40-D
MFSC features. The ASR system combination is performed us-
ing the Minimum Bayes Risk (MBR) technique with uniform
weights to all the systems under consideration [22].

Table 1: E2E LF-MMI ASR System Specification

System DNN Model Features Training Data

S1 TDNN MFSC Full Data
S2 TDNN MFSC Enhanced Speech
S3 TDNN-LSTM MFSC Enhanced Speech
S4 TDNN PNSC Enhanced Speech
S5 TDNN-LSTM PNSC Enhanced Speech

4. Experimental Results
The experimental results of the E2E LF-MMI TDNN and
TDNN-LSTM systems using 3-gram LM are reported in Ta-
ble 2. The robust PNSC feature set did not perform well com-
pared to the MFSC. The reason could be PNSCs features were
performed well on simulated additive and convolutive noises
[23]. The CHiME-5 database was recorded in real noisy en-
vironments along with the multiple speakers in conversation.
The overall results show that the TDNN system performed well
compared to the TDNN-LSTM for both the feature sets. The
% WER in the kitchen environment is significantly higher com-
pared to the living and dining hall as kitchen environment con-
sists of multi-source noise. For all the systems, session S09 has
a lower % WER compared to the session S02. We have also
shown the experiments by combining several systems to get the
complementary information. Out of many combinations, we re-
ported the results for three combinations (denoted using⊕ sym-
bol), namely, SC-1 (S2 ⊕ S3), SC-2 (S1 ⊕ S2 ⊕ S3), SC-3 (S1
⊕ S2 ⊕ S3 ⊕ S4). The best performance of 78.63 % WER is
achieved by combining S1 to S4 systems (SC-3).

The experimental results of using RNNLM rescoring is re-
ported in Table 3 for S1-S5 systems. The RNNLM rescoring
improves the performance for S1-S3 systems with 0.14-0.35 %
absolute reduction in WER. However, RNNLM rescoring did
not improve the performance for S4 and S5 systems that used
the PNSC feature set. In case of RNNLM rescoring, SC-2 com-
bination gave the lowest % WER. The system combination ex-
periments in Table 2 show that systems with 3-gram LM sig-
nificantly reduce % WER compared to the individual systems.
However, combined systems (SC-1 to SC-3) did not improve the
performance when using RNNLM rescoring compared to the 3-
gram LM. The reason may be presence of many disfluencies, ir-
regular pronunciations, repeated words, and non-language tags
in training corpus. For conversational ASR, RNNLM may not
model them well. In such cases, combining RNNLM with ex-
plicit models, such as cache and trigger models [24], [25] or
RNNLM adaptation [26] may improve the performance in con-
versational ASR.

In this challenge, we submitted the system results under
multiple device track and ranking-B. The comparison of our
proposed system with the baseline and other 3 systems submit-
ted under the same track & ranking is shown in Table 4. The
best performance is given by USTC-iFlytek system. The de-
velopment of the best system includes iterative based speech
separation, training data augmentation, SNR based array selec-
tion, and model fusions. The baseline system is conventional

Table 2: Results of various E2E system and their combinations
using 3-gram LM per session and location together with the
overall % WER

System Session Kitchen Dining Living Overall

S1
S02 88.30 83.22 80.79 83.85S09 84.92 85.15 81.10

S2
S02 88.62 83.01 80.54 83.75S09 84.42 85.51 80.88

S3
S02 90.23 84.94 82.49 84.79S09 84.50 83.69 81.46

S4
S02 89.13 85.65 83.93 85.17S09 84.82 83.95 81.97

S5
S02 93.99 91.44 87.31 89.30S09 87.35 88.55 86.14

SC-1
S02 85.89 79.88 77.49 80.14S09 79.79 79.44 77.06

SC-2
S02 84.35 77.60 75.29 78.69S09 79.24 78.87 76.49

SC-3
S02 84.21 78.46 75.64 78.63S09 78.23 78.15 76.27

Table 3: Results of various E2E system and their combinations
using RNNLM rescoring per session and location together with
the overall % WER.

System Session Kitchen Dining Living Overall

S1
S02 88.07 83.02 80.50 83.61S09 84.53 84.61 81.32

S2
S02 88.56 83.09 80.10 83.40S09 83.38 84.68 80.94

S3
S02 89.97 85.19 82.52 84.65S09 83.75 83.71 81.34

S4
S02 89.50 86.65 84.21 85.64S09 85.04 84.75 82.47

S5
S02 94.51 92.12 88.47 90.11S09 87.99 89.75 86.77

SC-1
S02 86.47 80.43 77.97 80.64S09 79.69 80.41 77.76

SC-2
S02 84.91 78.33 76.19 79.04S09 78.93 78.35 76.37

SC-3
S02 84.79 79.27 76.54 79.36S09 79.12 78.68 76.83

LF-MMI TDNN system which is trained with cleaned training
data (removing irregular utterances) whereas our E2E LF-MMI
system (S2) uses enhanced training data. Still, our E2E sys-
tem (S2) performed significantly better than the ESPnet E2E
baseline (10.95 % absolute reduction in WER). Finally, our pro-
posed system combination gave an absolute reduction of 5.12 %
in WER compared to the individual E2E system S2.

We have performed the experiment on evaluation set using
our best system (SC-3) for challenge submission. The transcrip-
tion is evaluated by challenge organizers. The results on evalu-



Table 4: Comparison of proposed system combination with other systems on development system

System System Development Session Kitchen Dining Living Overall
BF AU E2E RNNLM MF SA

LF-MMI TDNN(Baseline) ∗ [6]
√

- - - - - S02 87.3 79.5 79 81.3S09 81.6 80.6 77.6

ESPnet E2E ∗∗ [6]
√

-
√ √

- - S02 - - - 94.7S09 - - -

S2
√

-
√ √

- - S02 88.62 83.01 80.54 83.75S09 84.42 85.51 80.88

Proposed Combination (SC-3)
√

-
√ √ √

- S02 84.21 78.46 75.64 78.63S09 78.23 78.15 76.27

USTC-iFlytec [27]
√ √

- -
√

- S02 45.40 45.66 40.69 45.05S09 45.59 48.36 49.42

Hitachi-JHU [28]
√ √

-
√ √ √

S02 59.31 52.96 48.95 52.38S09 50.64 50.69 50.46

CAS [29]
√

- -
√

- - S02 80.53 71.64 67.27 71.02S09 69.62 68.40 65.83
BF - Beamforming, AU - Data Augmentation, MF - Model Fusion, SA - Speaker Adaptation

∗ This system used data cleanup strategy [6].
∗∗ This system is built from ESPnet [30].

ation set using baseline system, best submitted system and our
proposed system is reported in Table 5.

Table 5: Results of multiple-array and ranking-B systems on
evaluation set with the overall % WER.

System Session Kitchen Dining Living Overall

Baseline [6]
S01 82.55 67.17 81.60 73.27S21 77.62 65.82 70.40

USTC-iFlytek [27]
S01 58.08 37.11 55.07 46.14S21 52.47 41.11 42.20

Hitachi-JHU [28]
S01 57.01 41.22 60.67 48.24S21 51.59 42.17 43.82

CAS [29]
S01 67.72 53.61 72.91 61.01S21 65.13 53.14 58.45

Our Proposed System
S01 82.65 73.38 84.68 76.42S21 79.49 72.55 69.82

5. Summary and Conclusions
In this study, we proposed to use E2E LF-MMI acoustic model-
ing for the CHiME-5 challenge. The beamforming technique is
applied to the training and development set. This enhances the
speech signals and also significantly reduces the training corpus
in DNN training on single TITAN X GPU (7 days on full train-
ing database vs. 3 days on beamformed training database). We
have also shown the impact of using RNNLM rescoring along
with 3-gram LM. It is observed that the 3-gram LM performs
slightly better than the RNNLM. It may be because of conver-
sational speech and presence of many short utterances in the
corpus. Our proposed framework of using E2E LF-MMI sys-
tem performs significantly better than the challenge E2E base-
line on development set. The system combination of TDNN and

TDNN-LSTM trained from MFSC and PNSC features further
improves the performance. We can modify the proposed sys-
tem by training the E2E LF-MMI using BLSTM architecture.
We can also train the individual ASR system for each device
and fuse the systems by score combination technique. Recently
proposed RNNLM adaptation technique can be employed for
the task.
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