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Abstract
The submitted system for CHiME-5 challenge focuses on im-
plementing a better front-end for an automatic speech recog-
nition (ASR) system trained on the data provided by CHiME-
5. In this work, we focus on using non-negative matrix factor-
ization (NMF) based technique to denoise and dereverberation.
In Approach 1, the degraded single-channel speech utterances
were enhanced using multi-channel Weighted prediction error
(WPE) or NMF followed by a minimum variance distortionless
response (MVDR) beamformer to obtain an enhanced signal.
In Approach 2, we used multi-channel MVDR followed by a
NMF based single-channel enhancement. Using the baseline
acoustic model (AM), these enhanced speech utterances did not
provide improved WER compared to the baseline Beamformit
based system. So, we retrained the AM using WPE enhanced
data for training (Approach 3). These approaches were able
to improve the ASR results as compared to baseline. We are
submitting results for the single-array track and only focus on
acoustic robustness (i.e., ranking A).

1. Degradation model
The CHiME-5 recordings were done for conversational speech
happening in a dinner party scenario [1]. Four participants were
present at each of these dinner parties. The speakers were asked
to have normal conversations. The speech was recorded using
six Kinect microphone arrays placed in different locations in the
room. The duration of each dinner party was at least 1.5 hours.
The recordings were degraded by the presence of non-stationary
noise, reverberation, overlapping speakers and speaker move-
ments.

1.1. Model for reverberation and noise

In the proposed framework, it is assumed that at any time only
one speaker is active. Further, it is assumed that the clean
speech is degraded due to reverberation and noise. Other degra-
dations like the presence of interfering speakers and speaker
movements are not handled. Reverberation in the time domain
is modeled as the convolution of the original source with the
room impulse response (RIR). Noise is assumed to be additive
to reverberant speech. Time domain speech recorded by each
microphone yi(n) is written as,

yi(n) = yiR(n) + zi(n) = s(n) ∗ hi(n) + zi(n) (1)

where, s(n) is the clean utterance, and yiR(n), h
i(n) and zi(n)

are the reverberated speech, RIR and noise at the i-th micro-
phone, respectively.

The proposed NMF enhancements are based on the mag-
nitude spectrogram model for degraded speech in [2]. The
NMF enhancement can be performed for any one channel of

the microphone array recording or to the output of a multi-
channel enhancement method. The input degraded spectrogram
Y ∈ RK×T is modeled using NMF. Such a model is obtained
by utilizing NMF models for clean speech and noise spectro-
grams along with a separability assumption on RIR spectrogram
H(k, n) = H1(k)H2(n). The NMF models for clean speech
S and noise spectrograms Z are shown in (2).

S = WsXs

Z = WnXn (2)

where, Ws, Wn represents the bases for clean speech and
noise spectrograms, respectively. Xs, Xn represents the ac-
tivations for clean speech and noise spectrograms, respectively.
Using a separability assumption on RIR spectrogram and the
NMF models for noise and clean speech spectrograms, the de-
graded speech spectrogram can be represented as,

Y = H ∗n S+ Z

= [WR|Wn][X
T
R|XT

n ]
T (3)

where, WR and XR represent the bases and activation matrix
for reverb spectrogram, and ∗n represents convolution along
time index. The reverb bases and activations are related to the
corresponding clean bases and activations.

WR(k, r) =Ws(k, r)H1(k)

XR(r, n) = Xs(r, n) ∗n H2(n) (4)

The model for reverberation used in WPE is discussed in sec-
tion 2.2.

2. Proposed system for CHiME-5
This section discusses various multi-channel and single-channel
enhancement methods in the proposed framework for enhancing
the CHiME-5 data. Multi-channel enhancement includes beam-
forming and multi-channel WPE. Single-channel enhancement
uses NMF. The last subsection discusses various combinations
of multi-channel and single-channel methods used in this work.

2.1. Beamforming

Beamforming is commonly used to enhance a degraded multi-
channel recording. The algorithm acts as a spatial filter and
enhances source in a particular direction. The performance of
algorithm depends on an accurate estimate of source position.
This work compares the performance of two types of beam-
forming - delay-sum beamforming (DSB) and MVDR. DSB is
implemented using Beamformit [3]. The MVDR beamformer
uses information about noise covariance matrix and source lo-
cation to perform beamforming. Figure 1 shows the approach
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Figure 1: Block diagram of the MVDR based front-end system implemented for CHiME-5 challenge.

taken to estimate these parameters. An energy-based voice ac-
tivity detector (VAD) is used to estimate the silence regions.
Noise covariance is estimated from these silence regions. The
source localization provided by Beamformit is used in the im-
plementation of MVDR.

2.2. WPE

The CHiME-5 data consists of recording from a near realistic
setting of a typical home. The data is affected by reverbera-
tion prevailing inside the rooms. Reverberant data degrades the
performance of source localization and hence affect the ASR
results. The algorithm [4] uses a statistical approach, to remove
the late part of reverberation using the multi-microphone signal,
without any prior information of the RIR. The speech signal is
assumed to be generated using a Gaussian modeled process and
the estimate is achieved using a delayed linear prediction with
maximum likelihood estimation (MLE). The time-varying char-
acteristic of the speech is compensated in the estimate to an ex-
tent by normalizing each speech frame. The algorithm estimates
an inverse system to cancel the effects of late reverberation. The
estimator is robust such that the convergence is achieved within
a few seconds of utterance.

xm(n) =

Lh−1∑
k=0

h(k,m)s(n− k) (5)

dm(n) =

D−1∑
k=0

h(n,m)s(n− k) (6)

rm(n) =

Lh−1∑
k=D

h(k,m)s(n− k) (7)

xm(n) = dm(n) + rm(n) (8)

d̂m(n) = xm(n)− (Ĉ)Txm(n−D) (9)

The degradation and enhancement obtained using this ap-
proach is briefly discussed next. The observed signal at them-th
channel xm(n) can be modeled as (5) wherem,Lh corresponds
to microphone index and RIR length, respectively. h(n,m) and
s(n) represent the time domain RIR form-th channel and clean
speech, respectively. dm(n) in (6) corresponds to the received
clean speech plus the early reverberation part. rm(n) in (7) is
the undesirable late reverberation and xm(n) in (8) express the

observed signal as the sum of both. The early and late part of
the reverberation is separated by using aD sample index, which
splits the impulse response into two parts. (9) shows the desired
signal can be estimated from the previously observed samples,
where (Ĉ)T is the estimated regression coefficients using MLE.
This method is referred to as WPE.

2.3. Unsupervised NMF

The speech enhancement method proposed in [2] cannot be di-
rectly used for CHiME-5 data due to the following reasons.
Firstly, train data is needed to learn clean speech and noise
bases. This is unavailable for CHiME-5 data. Secondly, the
algorithm needs the knowledge of temporal variation of RIR
spectrogram H2(n), which is also unavailable. Hence it is ap-
propriately modified to handle CHiME-5 data.

Figure 2 shows the block diagram for the unsupervised
NMF algorithm used in the work. The basis vectors repre-
senting both clean speech and noise are learned from the de-
graded data. Hence, there is a need to separate out the clean
speech bases from the noise bases. For this purpose, noise
bases are learned first from noise-only regions (silence re-
gions) of degraded speech. The silence regions are estimated
using an energy-based VAD. An unsupervised NMF decom-
position is performed in these silence regions to estimate the
noise bases (Wn). With knowledge of Wn, a semi-supervised
NMF decomposition is then performed on the entire degraded
magnitude spectrogram, with Wn fixed, to estimate the clean
speech bases Ws and corresponding clean speech activations
Xs. The semi-supervised NMF decomposition is discussed in
Section 2.4.

For CHiME-5 data, the clean speech and noise bases are up-
dated every 2 minute. This is done to handle the non-stationary
behavior of background noise. The enhanced speech is recon-
structed using Ws, Xs and the phase information from the de-
graded speech.

2.4. Semi-supervised NMF

The proposed algorithm follows a two-stage approach as used
in [2]. In the first stage, the reverb bases WR, reverb activa-
tions XR, clean speech bases Ws and RIR frequency enve-
lope H1(k) are learned from the degraded data. In the sec-
ond stage, clean speech activations Xs and temporal variation
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Figure 2: Block diagram of the unsupervised NMF based enhancement used in the MVDR framework shown in Figure 1.

of RIR spectrogram H2(n) are learned from XR based on a
model for H2(n). The first stage uses Kullback–Leibler (KL)
divergence as the cost function as shown in (10). The second
term in the cost function is added to make sure that the solu-
tion obtained for Ws(k, r) follows the model in (4). Multi-
plicative updates are used to estimate the parameters WR(k, r),
Ws(k, r), XR(r, n), H1(k) from the cost function. The update
rules obtained are listed in equations shown in (11).

C =
1

KT

∑
n,k

KL(ŶD(k, n)|YD(k, n))+

α

KR

∑
k,r

(WR(k, r)−Ws(k, r)H1(k))
2 (10)

In the second stage, clean activations are estimated from reverb
activations. In order to avoid the trivial solution, as observed
in [2], the temporal variation H2(n) is modeled using an expo-
nential envelope, i.e., H2(n) = e−αn. Figure 3 plots the es-
timated temporal variation for different measured RIRs. From
the figure, it is observed that the variation of H2(n) can be ap-
proximated using an exponential with the decay rate controlled
by α. The modified cost function for the second stage is given
in (12). Multiplicative updates can be obtained to find the so-
lution. The proposed unsupervised NMF based dereverberation
and denoising method is referred to as R-NMF+NMF and the
proposed unsupervised NMF based dereverberation method is
referred to as R-NMF.

WR(k, r) =WR(k, r)

×

[ 2αT

R
Ws(k, r)H1(k) +

∑
n

ŷ(k, n)

y(k, n)
XR(r, n)

2αT

R
Ws(k, r)H1(k) +

∑
nXR(r, n)

]

Ws(k, r) =
WR(k, r)

H1(k)

H1(k) =H1(k)

∑
rWR(k, r)Ws(k, r)∑
rW

2
s (k, r)H1(k)

XR(r, n) =XR(r, n)

×

[ 2βK

R
Xs(r, n) ∗n H2(n) +

∑
n

ŷ(k, n)

y(k, n)
WR(k, r)

2βK

R
XR(r, n) +

∑
kWR(k, r)

]

Xn(r, n) =Xn(r, n)

∑
k

ŷ(k, n)

y(k, n)
Wn(k, r)∑

kWR(k, r)
(11)

C1 =
∑
r,n

(XR(r, n)−Xs(r, n) ∗n e−αn)2 (12)

2.5. Approaches taken

This section discusses the various frameworks experimented.
The baseline method using Beamformit followed by an en-
hancement using R-NMF+NMF. This approach is taken to re-
move the residual reverberation and noise present in the output
of Beamformit. This method is referred to as Bemformit+R-
NMF+NMF. The implementation of MVDR discussed in
Sec. 2.1 is referred to as MVDR. Muti-channel MVDR fol-
lowed by enhancement using R-NMF+NMF is referred to as
MVDR+R-NMF+NMF. Alternatively, each channel of multi-
channel data can be enhanced using R-NMF+NMF followed



Figure 3: The estimated temporal variation H2(n) for vari-
ous measured RIRs. It is observed that the variations have an
exponential-like decay with time.

by MVDR. This is referred to as R-NMF+NMF+MVDR. The
multi-channel WPE enhancement followed by Beamformit is
referred to as WPE+Beamformit. Multi-channel WPE followed
by R-NMF followed by Beamformit is referred to as WPE+R-
NMF+Beamformit.

3. Contributions
Most algorithms used in this work were already available in the
literature [3, 2, 4]. The implementation of the NMF based algo-
rithms (R-NMF and R-NMF+NMF) were modified accordingly
to handle the CHIME-5 data. Different combinations of multi-
channel and single-channel methods are tried. The WER for
different combinations were compared.

4. Experimental setup and evaluation
The CHiME-5 array recordings are severely degraded by
the presence of multiple speakers, speaker movements, non-
stationary noise, and reverberation. Presence of these degra-
dations makes building an enhancement system challenging. In
this work, we tried to account for these aspects.

The parameters used in various algorithms is discussed
next. The magnitude spectrogram was obtained using a 64 ms
Hamming window with a 32 ms hop. The TDOA estimates
provided by Beamformit was used in MVDR. The noise covari-
ance matrix was updated for every 2 minutes. The window is
selected so that we have sufficiently large silence regions for
obtaining the noise covariance matrix, but small so that noise
can be assumed to be stationary. The single channel NMF en-
hanced signal enhancement using NMF is also applied for every
2 minutes. For NMF, 200 bases vectors are learned for clean
speech and background. The noise bases vectors are learned
from the silence regions of each 2 minutes recordings. Silence
regions were obtained using an energy-based VAD. The clean
speech bases are learned by NMF decomposition of the original
degraded spectrogram, with the noise bases fixed to the value
obtained earlier. The enhanced speech magnitude spectrogram
is obtained from the clean speech bases and activations. The
enhanced speech is obtained by using the enhanced magnitude
spectrogram and phase of the original degraded speech. WPE
enhancement was performed on 32 ms window with 8 ms hop

size. Lh and D were chosen to be 10 and 3. For WPE+R-
NMF+Beamformit, the R-NMF is applied for every 10 s data.
The shorter window is chosen to account for the change in RIR
due to speaker movement.

Enhancement methods in Approach 1 apply a single-
channel enhancement on each channel of the microphone
array recordings to reduce the effects of reverberation
and noise. Beamforming is performed on the enhanced
data. The methods include WPE+Beamformit, WPE+R-
NMF+Beamformit, and R-NMF+NMF+MVDR. Approach
2 methods use single-channel enhancement as a post-
processing step for the beamformed output. These meth-
ods include Beamformit+NMF, Beamformit+R-NMF+NMF,
MVDR+R-NMF+NMF, WPE+Beamformit, and WPE+R-
NMF+Beamformit. Approach 1 and 2 focus on enhancing the
the front-end. These algorithms use baseline acoustic and lan-
guage models. The baseline AM is discussed next.

The baseline acoustic model uses a mixture of both close-
talking microphones and array channels data for training. A
total of 100k (61349 close-talking utterances and 38651 array
utterances) of this mixture were used for training the model,
with the utterance timestamps obtained from the transcripts.
Following the Ranking A part of the challenge, we focus on
using the baseline Gaussian Mixture Model (GMM) - Hid-
den Markov Model (HMM) and time-delayed neural network
(TDNN) acoustic model. Testing is done using the enhanced
development data. The enhancement was done for the ’refer-
ence’ array for a given session of the development data and for
each such enhancement, hypothesis transcripts were obtained
by feature extraction and decoding of each utterance of this en-
hanced recording file.

5. Results and discussions
Table 1 discusses the results obtained for various enhance-
ment methods. We were able to reproduce the baseline re-
sults. The Beamformit enhanced output has residual noise and
reverberation. Approach 1: we performed NMF based enhance-
ment of the individual channels and then used a MVDR beam-
forming as shown in Figure 1. We expected the method (R-
NMF+NMF+MVDR) to give better results based on a sample
10 minutes recording from the given data, as less background
noise will have better TDOA estimates. However, contrary to
this we obtained poor results when considering the entire data.
The performance of MVDR and NMF based approaches de-
pends heavily on the noise estimates. The provided data has
very few silence regions and noise estimates are poor. This
may have resulted in degraded ASR performance. Enhance-
ment using multi-channel WPE (WPE) was able to produce
better the ASR results. The improvement was due to reduced
effects of reverberation. This is because WPE does not have a
model to handle noise. Due to this observation, we hypothe-
sized that WPE followed by Beamformit (WPE+Beamformit)
should handle both reverberation and moise and hence give im-
proved ASR results. However, WPE+Beamformit degraded the
performance.

Approach 2: We suppressed the noise using a NMF based
denoising method (referred to as Beamformit+NMF) and a
NMF based dereverberation and denoising method [2] (referred
to as Beamformit+R-NMF). The ASR results do not show any
improvement in WER even though perceptually the speech is
enhanced.

Table 2 shows the location-based WER for different ses-
sions for dev data. The WER is degraded for all the locations.



Table 1: Overall WER (%) for the GMM-HMM systems tested
on the development test set using baseline acoustic and lan-
guage model.

Track System WER

Single
Degraded (single-channels) 92.18

Beamformit (Baseline) 91.33
Beamformit+NMF 93.94

Beamformit+R-NMF+NMF 95.51
MVDR 94.68

R-NMF+NMF+MVDR 95.56
MVDR+R-NMF+NMF 94.80

WPE 92.01
WPE+Beamformit 94.49

WPE+R-NMF+Beamformit 97.22

We include the results for R-NMF+NMF+MVDR in Table 2.
All these results were obtained without any retraining of the
acoustic model, i.e. mismatched conditions.

Table 2: Results on the development dataset for the GMM-
HMM system for R-NMF+NMF+MVDR enhancement tech-
nique. WER (%) per session and location together with the
overall WER.

Track Session Kitchen Dining Living Overall

Single Dev S02 97.58 96.47 94.56 95.56S09 94.77 95.30 94.43

Eval S01 97.06 91.45 108.24 97.36S21 96.82 94.30 99.49

Table 3: Overall WER (%) for the TDNN systems tested on
the development test set using baseline acoustic and language
model.

Track System WER

Single
Beamformit (Baseline) 81.1
R-NMF+NMF+MVDR 92.85

WPE 83.49
WPE+Beamformit 86.49

WPE+R-NMF+Bemformit 84.67

Table 4: Overall WER (%) for the TDNN systems tested on the
development test set using acoustic model obtained from WPE
enhanced training data.

Track System WER

Single
WPE 80.16

WPE+R-NMF+Bemformit 81.23

We have also obtained the TDNN results for the various
enhancement methods. Table 3 shows the ASR results ob-
tained for these approaches. We were able to reproduce the
baseline. However, the enhancement approaches failed to pro-
duce improved results. One of the reasons for the poor per-
formance of the ASR system discussed in Table 1, 3 can be

attributed to train-test mismatch (apart from presence of highly
non-stationary noise). The training data is the CHiME-5 data
and only the Dev data is enhanced. To avoid this mismatch,
we modified the AM. The AM was obtained from training data
which was enhanced using the same preprocessing technique as
done for testing (Approach 3). Table 5 shows results with the
matched condition for GMM-HMM system. The use of Beam-
formit enhanced train data were not able to significantly im-
prove the WER as compared using training done with degraded
data. One of the reasons can be that the enhancement meth-
ods are not able to completely remove the non-stationary noise
which is severely degrading the ASR performance. Such noise
is predominantly present in the kitchen and is less in the liv-
ing room. Based on this observation, we trained a new acous-
tic model using WPE enhanced data. The utterances from last
one hour of the 6-th array (which is placed in the living room)
were used for training. The WPE enhanced Dev data was able
to show significant improvement in WER as compared to base-
line. The results obtained are shown in Tabe 4. The WPE+R-
NMF+Beamformit method was also tried out. This method was
expected to further improve the ASR as the algorithm had mod-
els to handle reverberation and noise. However, the results were
poor as compared to WPE.

Table 5: Results on GMM-HMM system trained and tested
using the same enhancement technique (matched condition).
100 k utterances of the array processed data was used for train-
ing.

Track System WER

Single
Degraded (single-channels) 93.00

Beamformit 92.14

6. Summary
Three different approaches have been tried to improve the ASR
performance on CHiME-5 data. In Approach 1, each channel of
the microphone array is enhanced using NMF or WPE based ap-
proaches, followed by a beamformer. The motivation was to re-
duce the effects of noise and reverberation before beamforming
is performed. The enhanced channel should give better TDOAs
and hence better beamformer performance. Approach 2 uses
NMF based enhancement is performed as a post-filtering step
to beamforming. Single channel enhancement is expected to
remove the residual noise and reverberation present after beam-
forming. However, these methods give unconvincing results.
Train-test mismatch and lack of silence regions to correctly es-
timate noise were the reasons for the poor performance. In Ap-
proach 3 we tried to avoid these shortcomings. Testing is done
in a matched condition. The AM is build on enhanced training
data, which uses the same enhancement technique as in test-
ing. The Beamformit enhanced AM did not improve the ASR
results. However, building an AM using WPE enhanced data
of living room alone were able to improve the overall WER for
the entire WPE enhanced data. The improvements were bet-
ter than baseline. Moreover, WPE+R-NMF+Beamformit also
performed better using this AM.
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