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Abstract
This paper describes the Speech Technology Center (STC)

system for the 5th CHiME challenge. This challenge considers
the problem of distant multi-microphone conversational speech
recognition in everyday home environments. Our efforts were
focused on the single-array track, however, we participated in
the multiple-array track as well. The system is in the ranking
A of the challenge: acoustic models remain frame-level tied
phonetic targets, lexicon and language model are not changed
compared to the conventional ASR baseline. Our system em-
ploys a combination of 4 acoustic models based on convolu-
tional and recurrent neural networks. Speaker adaptation with
target speaker masks and multi-channel speaker-aware acous-
tic model with neural network beamforming are two major fea-
tures of the system. Moreover, various techniques for improv-
ing acoustic models are applied, including array synchroniza-
tion, data cleanup, alignment transfer, mixup, speed perturba-
tion data augmentation, room simulation, and backstitch train-
ing. Our system scored 3rd in the single-array track with Word
Error Rate (WER) of 55.5% and 4th in the multiple-array track
with WER of 55.6% on the evaluation data, achieving a sub-
stantial improvement over the baseline system.
Index Terms: CHiME-5 challenge, noise-robust ASR, acoustic
models, speaker adaptation

1. Introduction
Significant progress in Automatic Speech Recognition (ASR)

area was made in recent years. Many ASR tasks have been
thoroughly studied, and human parity level was achieved or
even outperformed for some of them [1, 2]. However, there
are still many challenges for researchers in ASR. One of such
challenges is Distant Speech Recognition (DSR). DSR specific
factors such as reverberation, noisiness, simultaneous speech of
several speakers, etc. degrade ASR system performance drasti-
cally.

To date many efforts are devoted to DSR [3–6]. One of
these efforts is the 5th CHiME challenge [7] which considers
the problem of distant multi-microphone conversational speech
recognition in everyday home environments. The main features
of the CHiME-5 challenge are:

• simultaneous recordings from multiple microphone ar-
rays;

• real conversation, i.e. talkers speaking in a relaxed and
unscripted fashion;
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• a range of room acoustics from 20 different homes each
with two or three separate recording areas;

• real domestic noise backgrounds, e.g., kitchen appli-
ances, air conditioning, movement, etc.

Audio data are recorded in real dinner parties conditions. In
each party, two participants act like hosts, and another two are
guests. Moreover, each party is arbitrarily divided into three
phases by location: kitchen, dining, and living. The minimum
duration of each phase is 30 minutes. Conversational speech
with a great amount of overlapped segments recorded in rever-
berant and noisy conditions is a main difficulty of CHiME-5.
Details on the challenge can be found in [7].

A large number of methods were developed for improving
multi-microphone DSR. First of all, dereverberation is able to
reduce the effect of interference caused by multiple reflections
of acoustic signal from different surfaces [5,8,9]. Besides dere-
verberation, signal arrival direction determination is exception-
ally helpful in case of multiple microphones. Direction of ar-
rival is then used in various beamforming approaches that al-
low to highlight target speech against the background of other
acoustic events [10–12]. Also separation of overlapped speech
is crucial for accurate speech recognition. There are traditional
approaches for source separation [13–16] as well as various
modern techniques based on neural networks [17–19]. Finally,
noise level reduction significantly decreases WER in DSR con-
ditions. Thus, there are many different approaches aimed at
improving the ASR system for speech recorded on a distant mi-
crophone array. Moreover, all of them should act in concert.

This paper provides a description of the STC system for
the 5th CHiME challenge. The first key feature of the system
is multi-channel speaker-aware acoustic model which utilizes
neural network beamformer similarly to [20]. Focusing on a
target speaker is performed following the concept of auxiliary
inputs [21]. We used this model to extract speaker-dependent
bottleneck (SDBN) features, as this approach has shown its ef-
fectiveness for conversational speech recognition in our previ-
ous works [22–24]. The second key feature is speaker adapta-
tion using target speaker masks which are per-frame probabili-
ties of a current frame usefulness. Masks extractor is a binary
classifier on top of the SDBN features. We present two simple
and effective schemes for speaker adaptation with these masks.

The rest of the paper is organized as follows. Section 2 de-
scribes data preparation techniques used in the system, includ-
ing array synchronization, signal enhancement, and data aug-
mentation. Acoustic modeling is covered in Section 3. Sec-
tion 4 presents experiments and results. Finally, Section 5 con-
cludes the paper.



Figure 1: Preparing of datasets

2. Data preparation
2.1. Array synchronization

We assumed that the original training data are not synchronized
perfectly. In order to compensate any asynchrony, we realigned
original utterance segmentation on Kinects using the baseline
GMM. The following scheme was used: extract per-frame fea-
tures for a Kinect utterance, then compute likelihoods of the
features sequence shifted by a few frames given the alignment
obtained on the corresponding worn utterance. Finally, we mod-
ified the original json segment bounds using the shift value with
maximum likelihood score.

More formally, if xt is a feature vector corresponding to
a frame t, LM (x | p) is the likelihood of a feature vector x
given the pdf-id p for modelM ,m is utterance length in frames,
p0, . . . , pm is worn pdf-id alignment, then the shift value is cal-
culated as

τ = argmax
−5≤l≤5

m−5∑
i=5

logLM (xi+l | pi),

where summation is performed over speech frames only. So,
new utterance bounds lnew, rnew are obtained from old utter-
ance bounds lorig , rorig as

lnew = lorig + τ,

rnew = rorig + τ.

2.2. Signal enhancement and data augmentation

We found out that a half-sum of left and right worn channels
(raw waveform mean, can also be considered as beamforming
in a forward direction) provides moderate WER improvement.
So, we added a half-sum of worn channels to the training set and
also used it to obtain senone alignment. This alignment was
used for target speaker masks generation (see Subsection 3.2)
and was transferred to Kinect channels.

Both worn and Kinect recordings were dereverberated us-
ing the multi-channel version of the Weighted Prediction Er-
ror (WPE) algorithm [9]. We used open-source implementa-
tion1 described in [25].

We slightly modified Kaldi cleanup procedure [6] used in
the baseline setup and called it strict cleanup. All utterances

1https://github.com/fgnt/nara_wpe

changed by vanilla cleanup were excluded. Furthermore, utter-
ances with WER higher than a predefined threshold were also
excluded. As a result, the amount of training data has been cut
in half.

In order to generate large-scale simulated data, we imple-
mented the room acoustics simulator in a similar way as de-
scribed in [26]. The simulation uses binaural signals of rela-
tively clean utterances as the source. The noises used in the
simulation were extracted from Kinect signals using a simple
speaker-invariant model.

Additionally, we applied speed perturbation data augmen-
tation technique [27]. Unlike the baseline recipe, we did not use
volume perturbation.

Finally, recently proposed mixup data augmentation tech-
nique [28] was used for acoustic model training. This approach
performs on-the-fly generation of virtual training examples by
combining the existing ones. We used Kaldi-compatible imple-
mentation2 described in our previous paper [29].

Figure 1 presents the preparation of 3 datasets D1, D2, and
D3, used for training of the acoustic models. Note that mixup is
not presented in the scheme, as it is performed on-the-fly during
the training.

3. Acoustic modeling
3.1. Multi-channel speaker-aware acoustic model

Following the approach applied in Google Home [20], we built
a multi-channel acoustic model that performs neural network
beamforming. This model takes 4-channel complex spectra as
an input and performs computations with both real and imagi-
nary parts of complex numbers. Assuming that speaker-aware
nature of the acoustic model is crucial for speech recognition
accuracy, we investigated neural network speaker mask estima-
tion. To focus on a target speaker, we applied the idea of auxil-
iary inputs used in [21].

First of all, we trained speaker embedding extractor de-
picted in Figure 2a using the triplet ranking loss [30]. In order
to build a mask branches mask1 and mask2, we used Residual
Attention Network [31]. Moreover, after the convolutional lay-
ers we applied the attention network with a soft mask on the
time dimension. Speaker embeddings were produced for each
frame and then averaged into a single auxiliary vector of di-
mension 512 for each utterance. The averaging procedure was

2https://github.com/Speechpro/Mixup



based on the speaker-adapted classifier designed to recognize 4
speakers, which was trained only on the target session record-
ings. This simple classifier was built on top of the embedding
features using the LightGBM toolkit3.

Once the speaker-aware auxiliary vector was defined for
all utterances, we biased mask estimation and attention layers
with auxiliary inputs as depicted in Figure 2b. Multi-channel
speaker-aware acoustic model was trained to classify 3912
pdf-ids. Training of this model was performed in 12 epochs us-
ing the CNTK toolkit [32]. Then, we added a 128-dimensional
linear bottleneck layer before the output layer by applying sin-
gular value decomposition. After that, one epoch of fine-tuning
was carried out. This model was used for extraction of speaker-
dependent bottleneck features.

D1 dataset was used for training of both speaker embedding
extractor and speaker-aware acoustic model. In the case of the
single-array track, we performed speaker adaptation only on a
single test session from the reference Kinect, i.e. trained 12
different classifiers. For the multiple-array track, we trained
classifier on reference utterances from test session, and used
this model for non-reference device signals.
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Figure 2: Multi-channel (a) speaker embedding extractor and
(b) speaker-aware acoustic model architectures.

3.2. Adaptation using target speaker masks

We found that speaker-invariant acoustic models and even mod-
els adapted with i-vectors often recognize all speech in the input
signal, including background speech and cross talk. To over-
come this shortcoming, we explored adaptation using a frame-
level mask of a target speaker.

The key point in building such masks is to train a classi-
fier that predicts whether we should use that frame or not. The
best option we found was to build a binary classifier on top of
the SDBN features extracted from the speaker-aware acoustic
model. Classifier was trained using the LightGBM toolkit.

Ideal targets for the classifier training were constructed in
two steps. First, senone alignment for all training utterances
using half-sum of two worn channels was obtained. Second, for
all frames containing silence only or target speaker overlapped

3https://github.com/Microsoft/LightGBM

with no more than two additional speakers, 1 was assigned; in
all other cases target was 0.

Two schemes of speaker adaptation using the obtained per-
frame target speaker masks (classifier probabilities) were ap-
plied:

• Mask Filtering (MF): Classify each frame as target or
non-target speech by a probability threshold, and then
simply throw out non-target speech frames before the
decoding. This method is easy to implement and also
speeds up the decoding.

• Mask Appending (MA): Train acoustic model using
a concatenation of input features and the soft-mask.
Acoustic model architecture is modified by adding a gate
with sigmoid layer to the input of the network.

3.3. Final acoustic models

In order to utilize the diversity of datasets, input features, model
architectures, and speaker adaptation approaches, we trained a
lot of various acoustic models. 4 of them were included in the
final system:

• AM1: Time Delay Neural Network (TDNN) [33] trained
with LF-MMI criterion [34] on D1 dataset and SDBN
features. Training was performed with mixup data aug-
mentation [29] and backstitch regularization [35].

• AM2: TDNN combined with unidirectional Long Short-
Term Memory layers (TDNN-LSTM) trained with LF-
MMI criterion on D2 dataset and 4-channel concatena-
tion of 80-dimensional log mel filterbank features. MA
speaker adaptation scheme was applied. Training was
performed with mixup data augmentation.

• AM3: the same as AM2, but features were
40-dimensional Mel Frequency Cepstral Coeffi-
cients (MFCC).

• AM4: Bidirectional Long Short-Term Mem-
ory (BLSTM) network trained with cross-entropy
criterion on D3 dataset and MFCC features appended
with an i-vector. As in previous models, mixup data
augmentation was applied. MF speaker adaptation
scheme was used in the evaluation stage. Additionally,
we applied a softmax temperature to a prior distribution
for this model during the decoding.

4. Experimental evaluation

Table 1: Overall WER (%) for individual models as well as their
combination on the development set

Track Model WER

Single

AM1 63.4
AM2 63.3
AM3 63.8
AM4 66.0
AM?

1 63.8

AM1 + AM2 + AM3 + AM4 59.4

Single+Dev AM1 + AM2 + AM3 + AM4 56.6

Multiple AM1 + AM2 + AM3 + AM?
1 58.1

Multiple+Dev AM1 + AM2 + AM3 + AM?
1 53.5

In the single-array track, at first, posterior-level combina-
tion of 4 channels for the single-channel model AM4 was per-



formed. Then, lattice-level combination of 4 systems (STC con-
fusion networks based implementation described in [36]) was
applied.

In the multiple-array track, we applied naive combination
of word lattices for all 6 devices. Moreover, we also added
lattices from the reference device to the combination. Single-
channel model AM4 was excluded due to very high computa-
tional cost (unlike LF-MMI models, this model did not have
frame subsampling, that led to 3 times longer decoding). In-
stead of AM4, we took model AM?

1 which is similar to AM1,
but without per-utterance averaging of speaker embeddings.
STC lattice combination was replaced with the Kaldi implemen-
tation due to computational reasons.

Table 1 shows the results of individual models as well as
their combination on the development data. It should be noted
that, in order to achieve maximum performance on the evalua-
tion data, we augmented the training datasets with the develop-
ment sessions and retrained our acoustic models. For clarity, we
denote this scenario as Single+Dev and Multiple+Dev tracks.
The results of the combination of these models were submitted
as our final system. In Table 2, we report detailed results of the
final system for each session and location. Finally, approximate
contributions in WER reduction for the methods applied in the
system are presented in Table 3.

Table 2: WER (%) for the final system per session and location

Track Session Kitchen Dining Living Overall

Single+Dev
Dev S02 65.5 56.2 52.4 56.6S09 55.7 56.8 51.9

Eval S01 65.9 48.8 65.8 55.5S21 58.9 49.2 51.9

Multiple+Dev
Dev S02 62.1 52.2 50.2 53.5S09 51.2 51.6 51.4

Eval S01 65.4 47.6 65.2 55.6S21 61.6 50.0 51.3

Table 3: Contributions in WER reduction for the methods ap-
plied in the system

Method WER reduction, % abs.

Array synchronization 0.9
Alignment transfer (worn half-sum to kinect) 1.3

WPE dereverberation 1.4
Strict cleanup 1.3

Room simulator 1.6
Speed perturbation 0.9

Mixup training 1.1
Backstitch training 0.5

Multi-channel models 2.2
Speaker adaptation (i-vectors) 2.4
Speaker adaptation (auxiliary) 4.1

Speaker adaptation (MF) 4.9
Speaker adaptation (MA) 7.0
Combination of 4 models 3.9

5. Conclusions
In this paper we presented our system for the 5th CHiME Chal-
lenge which scored 3rd in the single-array track and 4th in the
multiple-array track.

As can be seen from Table 3, back-end approaches pro-
vided the main improvement in terms of WER. Data prepara-
tion techniques and models combination were also beneficial.

On the other hand, our system almost does not use front-end ap-
proaches, except WPE dereverberation. We assume that signif-
icant performance gain can be achieved with strong front-end.

It is also interesting that there is no improvement on the
evaluation data in the multiple-array track comparing to the
single-array track. Probably, this is due to a large mismatch
between development and evaluation data.
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