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Abstract
In this paper, we describe our ZTSpeech for two tracks of
CHiME-5 challenge. For front-end, our experiments conduct
the comparisons between several popular beamforming meth-
ods. Besides, we also propose a omnidirectional minimum vari-
ance distortionless response (OMVDR) followed by weighted
prediction error (WPE). Furthermore, we investigate the im-
pact of data augmentation and data combinations. For back-
end, several acoustic models (AMs) with different architectures
are deeply investigated. N-gram-based and recurrent neural net-
work (RNN)-based language models (LMs) are both evaluat-
ed. For single-array track, by combining the most effective ap-
proaches, our final system can achieve 11.94% promotion on
performance in evaluation set, from 73.27% to 61.33%. For
multiple-array track, our final system can achieve 12.29% im-
provement in evaluation set, from 73.30% to 61.01%.

1. Introduction
Recently, the performance of automatic speech recognition
(ASR) has been significantly improved by deep neural networks
(DNNs). However, the performance of the far-field recognition
is still limited, which gradually attracts more attention. Sev-
eral approaches have been proposed to draw this issue, which
mainly focus on developing more powerful front-ends, more
robust DNN-based AM and RNN-based LM. Besides, some re-
searchers focus on the end-to-end far-field speech recognition,
which integrated fronts-ends and back-ends under one jointly-
trained framework.

Referring to front-ends, beamforming is the most popular
choice. Specifically, weighted delay and sum (WDAS) [1], min-
imum variance distortionless response (MVDR) [2], parameter-
ized multi-channel wiener filter (PMWF) [3] and generalized
sidelobe canceller (GSC) [4] are commonly deployed. These
methods are designed under different criteria, which represents
different degrees of the trade-offs between distortion and noise
reduction. Recently, data-driven-based masking approaches use
time-frequency masks to estimate spatial correlation matrix.
Technically, complex Gaussian mixture models (cGMM) [5]
and network-based methods [6, 7, 8] have reported the state-of-
the-art performance. Traditional methods, such as WPE [9, 10]
and DNN-based methods [11, 12], are widely utilized. Speech
enhancement [13, 14, 15] and speech separation [16, 17] also
provide effective solutions.

For back-ends, DNN-based AMs have achieved the state-
of-the-art performance in speech recognition (DNN-HMM-
based AMs [18, 19, 20] and time-delayed neural network
(TDNN) with lattice-free maximum mutual information train-
ing (LF-MMI) [21]). Attention-based [22, 23] and connection-
ist temporal classification-based [24, 25, 26] end-to-end meth-
ods gradually attract more attention. The performance of LMs

also has been improved by RNN [27, 28]. On the contrary, some
researchers focus on the end-to-end fashion, which fused the
front end and back end integrally. Some methods use a stronger
DNN-based AM to process the raw multi-channel waveforms
[29, 30], and some focus on jointly training speech enhance-
ment and AM [31, 32, 33, 34].

CHiME challenges [35, 36, 37, 38] provide an excellen-
t platform to evaluate the performance of signal enhancement
and noise-robust AMs for ASR systems. However, the pre-
vious challenges are restricted by the limited scale of data,
single-speaker environment and fixed distance between arrays
and source. CHiME-5 [39] provides a large-scale corpus of re-
al multi-speaker conversational speech in multiple places. This
dataset is derived from everyday scenario, and the proposed sys-
tems based on this dataset have more practical value.

Our goal is to build a system for far-field multi-channel
speech recognition, which involves front-end and back-end
techniques. Our contributions are as follows: (1). We evaluate
the performance of classical beamforming methods on CHiME-
5 dataset. Simultaneously, OMVDR-WPE is proposed. (2). We
explore how the performance varies to different combination-
s and augmentation of our data. (3). We incorporated LSTM
and BLSTM into LF-MMI TDNN to explore the impact of d-
ifferent AMs on performance. (4). The role of different LM-
s is also investigated. We evaluate the performance via Word
Error Rate (WER). For single-array track, Our OMVDR-WPE
achieves 0.89% improvement compared with WDAS. Com-
pared with baseline, experimental results show that our ZT-
Speech achieves 9.92% improvement in development set, from
81.07% to 71.15%, and 11.94% in evaluation set, from 73.27%
to 61.33%. For multiple-array track, compared with baseline,
experimental results show that our ZTSpeech achieves 8.85%
improvement in development set, from 82.73% to 73.88%, and
12.29% in evaluation set, from 73.30% to 61.01%.

The rest of this paper is organized as follows. Section 2
introduces the system and describes the algorithms in this pa-
per. Experimental results for single array track are presented in
Section 3. Section 4 details the experimental results of multiple-
array track. Finally, Section 5 provides the conclusion.

2. System Overview
The proposed ZTSpeech consists of 2 parts: front-end and back-
end. Each processing step is detailed in the following sections.

2.1. Front end

2.1.1. Omnidirectional beamforming

The traditional MVDR is designed to choose the coefficients
of the filter which can minimize the output power. It has the
constraint that the desired speech signal is not affected. MVDR



problem for choosing the weights is written as:

min
W

E||WHX||2, s.t. WHd = 1, (1)

where W denotes the filter, X is input signal and d is steering
vector. Solved by Lagrange multipliers, W comes from:

W =
Φ−1

NNd

dHΦ−1
NNd

, (2)

where Φ−1
NN is the noise correlation matrix, and H denotes con-

jugate transposition. The performance of MVDR relies heavily
on the estimation of Φ−1

NN and d. If a segment disturbed by oth-
er speakers, traditional methods will give wrong directions in
some frames. For network-based mask estimation methods, a
large scale of parallel dataset is required to train the network.
But there is no clean speech matched with noisy one practi-
cally. OMVDR calculates W for all directions and provides
multiple enhanced speech. Speech with the highest energy is
regarded enhanced. When ambient noise is weaker than the s-
peaker’s voice, the dominant speech can be enhanced despite
the short-term loud noise and the human interference. When
positions keep stable without overlap, this method can separate
speech successfully. OMVDR enhances speech in fixed direc-
tion, which avoids the inaccurate direction estimation.

In this experiment, since speech is collected by linear ar-
rays, we choose 37 directions of arrival which distributed from
0 degrees to 180 degrees with 5 degrees step. The speech among
37 enhanced segments with the highest energy is considered to
be the speech we need.

2.1.2. WPE-based speech dereverberation

WPE uses an autoregressive generative model for the acous-
tic transfer functions (ATFs) and models the spectral coeffi-
cients of the desired speech signal using a Gaussian distribu-
tion. Dereverberation is then performed by maximum likeli-
hood (ML) estimation of all unknown model parameters. In
an enclosed place, the reverberant speech signal captured by
M microphones are typically modeled in the short-time Fourier
transform (STFT) domain as:

xm
t,f =

Lh−1∑
l=0

(hm
l,f )st−l,f + emt,f , (3)

where hm
l,f models the ATF between the speech source and m-th

microphone in STFT domain. Lh denotes the length of ATF and
H denotes the complex conjugate operator. The additive term
emt,f jointly represents modeling errors and the additive noise
signal. The formula can be rewritten as:

xm
t,f = dmt,f +

Lh−1∑
l=D

(hm
l,f )st−l,f + emt,f , (4)

where dmt,f is composed of the anechoic speech and early reflec-
tions at the m-th microphone and D corresponds to the duration
of the early reflections. For simplification, the signal observed
at the first microphone (m = 1) can be written in:

x1
t,f = dt,f +

M∑
m=1

(gmf )xm
t−D,f , (5)

and the dereverberated signal can be estimated as:

dt,f = x1
t,f −

M∑
m=1

(gmf )xm
t−D,f , (6)

Therefore, dereverberation can be performed by estimating
the regression vectors gmf and calculating an estimate of the de-
sired speech signal dt,f .

2.2. Back end

2.2.1. Acoustic Model

The baseline framework uses an advanced LF-MMI-based
TDNN. In our experiment, we integrate long short-term memo-
ry neural network (LSTM) and its bi-directional version (BLST-
M) into TDNN. And LF-MMI-based TDNN with different con-
figurations are investigated. Specifically, TDNN-a has 9 TDNN
layers with 512 nodes per layer, which is the same as baseline.
TDNN-b has 11 TDNN layers with 1280 nodes per layer. And
one linear layer with 256 nodes is added between every two
TDNN layers. TDNN-c has 11 TDNN layers with 1536 nodes
per layer. And two linear layers with 256 nodes are added be-
tween every two TDNN layers. LSTM-TDNN-a has 6 TDNN
layers with 700 nodes per layer followed by 3 LSTM layers with
700 nodes per layer. LSTM-TDNN-b has the same structure
with TDNN-c but with 4 extra LSTM layers. BLSTM-TDNN-a
has 3 TDNN layers with 1024 nodes per layer followed by 3
BLSTM layers with 1024 nodes per layer.

2.2.2. Language Model

Firstly, several Good Turning-based, Kneser-Ney-based and
Max Entropy-based 3-gram, 4-gram and 5-gram LMs are
trained. The LMs with the minimum perplexity (PPL) are
chosen and the search graphs are created by these LMs. The
graphs are then rescored by RNN-based and LSTM-based LM-
s. Specifically, RNN-LM-a has 1 layer with 30 nodes. LSTM-
LM-a has 2 LSTM layers with 200 nodes per layer. LSTM-LM-
b has 2 LSTM layers with 400 nodes per layer.

2.3. Experimental Setup

In our study, development set contributes to controlling the
learning rates and evaluating different models. The final re-
sults are all evaluated on evaluation set. Speech signal is con-
veyed via frames. For each frame, acoustic features are gen-
erated based on 80-dimensional log-mel filterbank features and
3-dimensional pitch features [40]. The alignments are gener-
ated by a pre-trained GMM-HMM system. LMs are trained on
transcription texts of the training set and trained by SRILM [41]
and Tensorflow [42]. AMs are trained by Kaldi [43].

3. Experimental Results on
Single-array-based Speech Recognition

3.1. Speech Enhancement

In this section, several beamforming methods [44] have been
applied to enhancing the data. For comparison, AM is trained
via baseline script and keeps fixed. The training data is un-
enhanced while the development set is enhanced. The experi-
mental results are shown in Table 1.

Table 1 tells that cGMM-based methods produce worse re-
sults. The execution order of WPE and beamforming methods
also has an effect on the performance. Multi-channel WPE may
degrades speech quality and has a bad affects on subsequen-
t MVDR. Superdirective MVDR (SMVDR) does not suppress
white noise sufficiently, and the noise covariance matrix cannot
be estimated in real time. OMVDR-WPE achieves best results
with 0.89% improvement.



Table 1: Comparison of beamforming methods in WER (%)

System Dev Set (%)
WDAS 81.07
GSC 80.79

cGMM-MVDR 88.95
cGMM-PMWF 85.51
WPE-SMVDR 87.20
SMVDR-WPE 83.43
OMVDR-WPE 80.18

3.2. Data Selection and Augmentation

In baseline, only speech recorded by the binary microphones
and arrays are used for training. Thus it tends to cause mis-
match between training data and evaluation data. It is necessary
to augment and enhance the training data and investigate the
effect.

Firstly, we explore whether enhance training data is mean-
ingful or not. In this experiment, training data is enhanced by
BeamformIt [1]. Secondly, we investigate the impact of da-
ta augmentation. And 100000, 300000, 500000 utterances are
used to train the acoustic model respectively. The experimental
results are shown in Table 2.

Table 2: Comparison of data augmentation in WER (%)

System Data Combinations Data Size Dev Set (%)
Baseline Original 100k 81.07
System1 Enhanced 300k 79.44
System2 Original+Enhanced 300k 79.65
System3 Original+Enhanced 500k 79.90

Compared with baseline, system 1 promotes performance
by 1.63%. This owes to the larger train set, which means more
complex conversation scenarios and acoustic information can
be modeled by AM. At the same time, due to the training data
and the evaluation data are matched, the performance is further
improved. Compared with system 1, the performance of system
2 and 3 degrades. This is may be caused by the random initial-
ization, which imports fluctuations in model performance. At
the same time, it also shows that the performance is basically
saturated in a certain amount of data.

3.3. Acoustic Model

According to the results in section 3.1 and 3.2, we conducted
two training datasets. Data 1 is the same as the system 1 in
section 3.2. For data 2, training data consists of the binary-
microphone close-talk speech, WDAS-based enhanced speech
(500k) and OMVDR-WPE-based enhanced speech (50k). T-
wo development sets are conducted which enhanced by Beam-
formIt and OMVDR-WPE respectively. We evaluate several
LF-MMI-based TDNN and LSTM-TDNN AMs with different
structures. The results are shown in the following Table 3.

For data 1, the performance of WDAS-based dev set is bet-
ter than OMVDR-WPE-based dev set. This is because data 1 is
enhanced by WDAS, which matches with training data. Among
AMs, TDNN-c is the best. For data 2, the performance gap
between WDAS-based and OMVDR-WPE-based dev set be-
comes smaller. Adding OMVDR-WPE-enhanced data to train-
ing set can effectively improve the performance of OMVDR-

Table 3: Comparison of different AMs in WER (%)

Data System Dev Set (%)
WDAS OMVDR-WPE

Data 1

TDNN-a 79.44 79.87
TDNN-b 73.59 75.79
TDNN-c 71.81 74.37

LSTM-TDNN-a 77.58 81.36
LSTM-TDNN-b 74.50 76.58

BLSTM-TDNN-a 78.36 84.05

Data 2 TDNN-a 79.90 80.13
TDNN-c 73.29 73.94

WPE-based dev set. Due to time constraint, we have not en-
hanced all training set by OMVDR-WPE. We believe that the
performance of OMVDR-WPE-based dev set can be improved
if the training set is fully enhanced by OMVDR-WPE.

3.4. Language Model

Based on the best AM, TDNN-c, we explore the impact of LM-
s. First, we explore the system performance under differen-
t N-gram LMs. Several 3-gram, 4-gram and 5-gram LMs are
trained. Max-entropy-based LMs achieve the minimum PPL,
which are utilized in the following experiments. The experi-
mental results are shown as follows:

Table 4: Comparison of LMs in WER (%)

System PPL Dev Set (%)
3-gram 154.5547 71.77
4-gram 154.7304 71.81
5-gram 155.1294 71.66

3-gram+RNN-LM − 71.36
3-gram+LSTM-LM-a − 71.18
3-gram+LSTM-LM-b − 71.15

From Table 4, 3-gram-based LM achieves the minimum P-
PL and well WER. For ranking B, we use RNN-based LMs to
rescore the 3-gram LM. The experimental results are shown in
Table 4.

In brief, for ranking A, our system has WDAS-based front-
end, TDNN-based AM and 3-gram-based LM. Compared with
baseline, this system achieves 9.41% WER improvement in
development set, from 81.07% to 71.66%, and 11.26% in e-
valuation set, from 73.27% to 62.01%. Our best system has
WDAS-based front-end, TDNN-based AM and LSTM-based
LM. Compared with baseline, this system achieves 9.92% W-
ER improvement in development set, from 81.07% to 71.15%,
and 11.94% in evaluation set, from 73.27% to 62.01%. Thus,
our best result for single-array track is detailed in Table 5.

4. Experimental Results on
Multiple-array-based Far-field Speech

Recognition
4.1. Speech Enhancement

In this experiment, we use the same beamforming methods as
in section 3.1. At the same time, the AM is trained via baseline
script. The experimental results are shown in Table 6.

In multiple-array track, Table 6 shows that cGMM-based



Table 5: Results for the best system. WER (%) per session and
location together with the overall WER.

Rank Session K. D. L. Overall

Rank A
Dev S02 80.62 71.91 68.04 71.66S09 71.10 69.14 66.48

Eval S01 68.72 54.90 73.51 62.01S21 66.21 55.09 59.06

Rank B
Dev S02 80.48 71.36 67.75 71.15S09 69.84 69.11 65.46

Eval S01 68.76 53.90 73.56 61.33S21 65.55 54.07 58.05

Table 6: Comparison of beamforming methods in WER (%)

System Dev Set (%)
WDAS 82.73
GSC 82.35

cGMM-MVDR 83.04
cGMM-PMWF 86.11
MVDR-WPE 83.18

methods still perform poorer than WDAS. GSC achieves 0.38%
improvement. For simplicity, in the following experiments, the
multi-channel data is enhanced by BeamformIt.

4.2. Data Selection and Augmentation

Mismatch between training/evaluation data causes performance
degrades. In this section, we explore the impact of data augmen-
tation and combinations. Similar to section 3.2, we augment
training data by enhancing train set. And we select 100000,
300000, 500000 utterances to train AM respectively. The ex-
perimental results are shown in Table 7.

Table 7: Comparison of data augmentation in WER (%)

System Data Combinations Data Size Dev Set (%)
Baseline Original 100k 82.73
System1 Enhanced 300k 81.44
System2 Original+Enhanced 300k 81.62
System3 Original+Enhanced 500k 81.71

By adding enhanced data to training set, the performance
is improved. Model performance is further improved as the
amount of data increases. Compared with baseline, system 1
achieves the best performance with 1.29% WER improvement.

4.3. Acoustic Model

We conducted one training set in multiple-array case. The da-
ta combines binary-microphone close-talk speech and WDAS-
based enhanced speech (300k). We evaluate several LF-MMI-
based TDNN and LSTM-TDNN AMs with different structures.
The results are shown in Table 8. Here, TDNN-c achieves the
best results again. It gains 6.77% WER improvement compared
with TDNN-a.

4.4. Language Model

Based on the best AM, TDNN-c, we explore the impact of d-
ifferent LMs. First, we explore the system performance under

Table 8: Comparison of different AMs in WER (%)

System Dev Set (%)
TDNN-a 81.44
TDNN-b 76.13
TDNN–c 74.67

LSTM-TDNN-a 80.77
LSTM-TDNN-b 80.77

BLSTM-TDNN-a 83.69

Table 9: Comparison of LMs in WER (%)

System PPL Dev Set (%)
3-gram 154.5547 74.67
4-gram 154.7304 74.69
5-gram 155.1294 74.75

3-gram+RNN-LM − 74.27
3-gram+LSTM-LM-a − 73.94
3-gram+LSTM-LM-b − 73.88

different N-gram LMs. Max entropy-based 3-gram, 4-gram and
5-gram LMs has the minimum PPL among all LMs. The exper-
imental results are shown in Table 9:

In Table 9, 3-gram-based LM has the minimum PPL and
WER, which is used for ranking A. For ranking B, we use RNN-
based LMs to rescore 3-gram LM. The experimental results are
shown in Table 9.

In brief, for ranking A, our system has WDAS-based front-
end, TDNN-based AM and 3-gram-based LM. Compared with
baseline, this system achieves 8.06% WER improvement in
development set, from 82.73% to 74.67%, and 11.53% in e-
valuation set, from 73.30% to 61.77%. Our best system has
WDAS-based front-end, TDNN-based AM and LSTM-based
LM. Compared with baseline, this system achieves 8.85% W-
ER improvement in development set, from 82.73% to 73.88%,
and 12.29% in evaluation set, from 73.30% to 61.01%. Thus,
our best result for multiple-array track is detailed in Table 10.

Table 10: Results for the best system. WER (%) per session and
location together with the overall WER.

Rank Session K. D. L. Overall

Rank A
Dev S02 79.82 73.33 72.72 74.67S09 73.33 72.53 74.01

Eval S01 67.99 54.64 73.10 61.77S21 65.84 54.44 59.63

Rank B
Dev S02 79.45 73.48 73.00 73.88S09 70.66 69.99 72.16

Eval S01 67.72 53.61 72.91 61.01S21 65.13 53.74 58.45

5. Conclusion and Discussion
In this paper, we introduce ZTSpeech system for CHiME-5
challenge. By using fixed AM, our proposed OMVDR achieves
0.89% WER improvement compared with WDAS. Afterward-
s, the performance of the system is further improved by data
augmentation and enhancement. Our final system can achieve
11.94% performance improvement for single-array track and



12.29% for multi-array track.
In CHiME-5, a lot of speech segments are interfered by oth-

er speakers. At the same time, because speakers do not face to
arrays when talking. The speech received by arrays may not
come from direct paths, which degrades the performance of
source direction of arrival. For front-end, we have tried vari-
ous methods. Classical beamforming methods do not perform
well. DNN-based beamforming does not utilized because par-
allel corpus is not available. We also experiment with single-
channel and multi-channel-based unsupervised speech enhance-
ment. Due to time constraint, we do not fine tune models, and
the performance fails to exceed the baseline. We will try to
generate parallel dataset by using room impulse response and
try DNN-based approaches. At the same time, we will con-
tinue to explore unsupervised speech enhancement, which have
more practical values. When using the same AM, our OMVDR-
WPE performs better than WDAS. However, we do not use this
method in the subsequent experiments because we do not en-
hance all train set by OMVDR-WPE. We will then try to en-
hance all training set to further investigate this method.

For back-end, when the expressiveness of AM is powerful
enough, the shortcomings of the front-end can be compensated
to some extent. We only tried LF-MMI-based TDNN models.
In the near future, we will try end-to-end methods.
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