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Abstract
This paper presents Hitachi and JHU’s efforts on developing
CHiME-5 system to recognize dinner party speeches recorded
by multiple microphone arrays. We newly developed (1) the
way to apply multiple data augmentation methods, (2) residual
bidirectional long short-term memory, (3) 4-ch acoustic models,
(4) multiple-array combination methods, (5) hypothesis dedu-
plication method, and (6) speaker adaptation technique of neu-
ral beamformer. As the results, our best system in category
B achieved 52.38% of word error rates (WERs) for develop-
ment set, which corresponded to 35% of relative WER reduc-
tion from the state-of-the-art baseline. Our best system also
achieved 48.20% of WER for evaluation set, which was the 2nd
best result in the CHiME-5 competition.

1. Background
This paper describes our contribution for the 5th CHiME Chal-
lenge (CHiME-5). Our system was designed for both category
A and B, and both single and multiple array settings. Fig. 1
shows all of our contributions on the CHiME-5. According to
this graph, we explain acoustic modeling in section 2.1, fron-
tend processing in section 2.2, language modeling in section
2.3, and decoding techniques in section 2.4.

2. Contributions
2.1. Acoustic modeling

2.1.1. Overview

Our acoustic model (AM) training procedure is depicted in Fig.
2.

1. We first trained Gaussian mixture model (GMM) by us-
ing the combination of L, R and L+R channel of worn
microphone training data. Its training procedure is the
same with the baseline [1].

2. We then created the phone alignment for L+R mixture of
worn microphone data based on the GMM-AM, succeed-
ing the data cleanup procedure as with the baseline pro-
gram [1]. We then created the alignment for full training
set for 1-ch AM by copying the alignment of worn mi-
crophone data. Here, full training set was created by ap-
plying multiple data augmentation techniques explained
in Section 2.1.2.

3. Next, we trained iVector extractor by using the full train-
ing set. We then trained 1-ch AM by using the full train-

ing data and its iVector. Training was conducted based
on the LF-MMI criterion.

4. Finally, we trained 4-ch AM initialized from 1-ch AM.
Training was first conducted based on the LF-MMI crite-
rion, and then continued based on the LF-sMBR criterion
[2]. In this step, we used 4-ch array training data without
data augmentation. In addition, we used weighted iVec-
tor extraction procedure, in which iVector was updated
only on the single-speaker regions. Architecture of the
4-ch AM is described in Section 2.1.3.

2.1.2. Data augmentation for 1-ch AM training

We applied multiple types of data augmentation methods for the
training data of 1-ch AMs. This data augmentation procedure
finally produced about 4,500 hours of training data.

For worn microphone training data, we mixed L and R
channels to create centered (=L+R) channel. Then L, R and
center channels were augmented by speed perturbation [3] (x3),
volume perturbation (x1), reverberation and noise perturbation
(x2), and bandpass perturbation (x2). To simulate the reverber-
ation conditions, we applied randomly generated impulse re-
sponses simulated by the image method by following the small
and middle sized room settings in [4]. We also randomly added
non-speech region extracted from microphone array training
data in order to simulate the noisy condition. Bandpass per-
turbation was our original contribution in which randomly-
selected frequency band was cut off under the constraint of leav-
ing at least 1,000 Hz band within the range of less than 4,000
Hz. These procedure finally produced about 1,500 hours of data
(36 times of the original data size).

We also used the first channel of all microphone array data
and the data after applying BeamFormIt [5]. We applied the
same data augmentation techniques except the reverberation
and noise perturbation. These procedure produced about 3,000
hours of data (72 times of the original data size). Finally, we
combined 1,500 and 3,000 hours of data to create full training
set for 1-ch AM.

2.1.3. 4-ch AM with RBiLSTM

The model architectures of our AM are depicted in Fig. 3. For
the 4-ch acoustic features, we used two types of features. One
is log amplitude log |xi,f,t| of the observation for each micro-
phone i (= 1, 2, 3, 4), time frame t, and frequency bin f . An-
other feature is the phase difference between each and the 1st



Figure 1: Step-by-step improvements for development set

Table 1: Effect of data augmentation for baseline model.
Track Data Epochs rp/np bp Worn Ref-Array

Single W +R1 4 44.05 79.65
Single W +R1 +B1 4 44.49 78.72
Single W +R1..6 +B1..6 4 48.92 78.51
Single W +R1..6 +B1..6 2

√
45.82 77.26

Single W +R1..6 +B1..6 1
√ √

45.37 76.31
rp: reverberation perturb., np: noise perturb., bp: bandpass perturb.

In data column, W : worn mic., Ri : raw 1ch of i-th array, Bi: BeamFormIt 1ch of i-th array.

microphone as follows.

cos(∠(xi,f,t)− ∠(x1,f,t)) (i = 2, 3, 4), (1)
sin(∠(xi,f,t)− ∠(x1,f,t)) (i = 2, 3, 4). (2)

Our AM training procedure is as follows. We first trained
the AM without 4-ch branch based on LF-MMI by using aug-
mented training data described in section 2.1.2. We then added
randomly initialized 4-ch branch to the AM and continued the
LF-MMI training. In this phase, we updated only newly added
parameters. Finally, entire parameters of the 4-ch AM were up-
dated based on LF-sMBR criterion.

For the network architecture, we proposed residual bidi-
rectional long short-term memory (RBiLSTM) in which
backward(b)-LSTM is applied on top of the forward(f)-LSTM
while directly appending the outputs of f-LSTM and b-LSTM
(Fig. 4). WERs with different model architectures are shown
in Table 2. As shown in the table, we observed performance
improvements by both RBiLSTM and 4-ch input branch.

2.2. Frontend processing

For frontend processing, we newly developed minimum vari-
ance distortion-less response (MVDR) beamforming techniques
with two types of speaker adaptive mask estimation methods: 1)

Table 2: Comparison of acoustic model architectures.
Track Model Worn Ref-Array

Single Baseline 45.37 76.31
Single 1-ch CNN-TDNN-LSTM (LF-MMI) 39.22 68.87
Single 1-ch CNN-TDNN-BiLSTM (LF-MMI) 40.04 68.42
Single 1-ch CNN-TDNN-RBiLSTM (LF-MMI) 39.21 67.46
Single 4-ch CNN-TDNN-RBiLSTM (LF-MMI) n/a 64.54
Single 4-ch CNN-TDNN-RBiLSTM (LF-sMBR) n/a 64.25

speaker-adapted neural networks and 2) speaker-aware complex
Gaussian mixture model (CGMM).

2.2.1. Speaker adaptive mask estimation neural network

In this method, we first trained a speaker-independent mask es-
timation network by using artificially mixed training data [6, 7].
The network was then retrained for each speaker using non-
overlapped speech segments by following the start and end time
stamps in the transcriptions. A loss function to adapt to the tar-
get speaker p is

J
(p)
adapt =

∑
f,t

BCE
(
ρt,pM

(p)
f,t , M

(p)
f,t

)
, (3)

where M (p)
f,t is the network output for speaker p’s mask at time t

and frequency f , and BCE is the binary cross entropy function.
The term ρt,p is 1 if speaker p is present at time t, and otherwise
0. This loss function is designed for enhancing the difference
between the target speech and interference speeches, as well as
between the target speech and real background noises.

At inference stage, the mask for the target speaker p was
estimated using both target and interference speakers’ networks.

M̂
(p)
f,t =

{
M

(p)
f,t if argmaxq ρt,qM

(q)
f,t = p

0 otherwise.
(4)



Figure 2: Overview of acoustic model training procedure

Figure 3: Acoustic model architecture

Motivation for this operation is to discard the time-frequency
components that are not dominated by the target speaker. The
estimated mask was used to estimate enhanced covariance ma-
trices and steering vectors, which were then fed into the MVDR
beamformer to extract the target speaker’s speech.

2.2.2. Speaker-aware CGMM-based MVDR

We also developed the MVDR beamformer with CGMM-based
mask estimation method [8, 9]. We used a block-wise approach

Figure 4: LSTM, BiLSTM and Residual-BiLSTM

to extract target speaker’s speech. Namely, we segmented the
multi-channel audios into small blocks, and performed offline
CGMM-based MVDR beamforming for each block. Enhanced
speech blocks were then concatenated to form the input for the
backend decoder.

We used three Gaussians to model the complex spectral
coefficients; the first Gaussian for target speaker, the second
one for interference speakers and the third one for background
noise. To estimate the target speaker’s speech accurately,
we searched the nearest non-overlapped segment of the target
speaker by following the start and end time stamps in the tran-
scription, and used that segment to initialize the target speaker’s
Gaussian. Gaussians for interference speakers and background
noise were initialized by the observation and identity matrix, re-
spectively. After the convergence of the EM algorithm, the tar-
get speaker mask and background noise mask were both used
to estimate enhanced covariance matrices and steering vectors,
which were then fed into the MVDR beamformer to extract the
target speaker’s speech. Detailed parameters for the speaker-
aware CGMM-based MVDR are given in Table 3.



Table 3: Parameters for the block-wise CGMM-based MVDR
beamformer.

Block size = 6.4s
Frame length = 1024

Frame shift = 256
Number of Gaussians = 3
Number of iterations = 10

2.2.3. Comparison of frontend processing

WER with different frontends are shown in Table 4. We first
found that raw input was better than BeamformIt which was
used in the baseline method. We then found that weighted
prediction error (WPE)-based dereverberation [10] slightly re-
duced the WER. Finally, we found that both the neural network
based beamformer and the CGMM based beamformer signifi-
cantly reduced the WER. Note that our final result was obtained
by combining results with the neural network based and CGMM
based MVDR beamformers.

Table 4: Comparison of frontend processing.
Track Frontend for 1-ch input Frontend for 4-ch input Ref-Array

Single Raw Raw 63.79
Single BeamFormIt Raw 64.28 (*)
Single WPE WPE 63.49
Single WPE + CGMM-MVDR WPE 62.53
Single WPE + NN-MVDR WPE 62.09

(*) It is slightly different from the value in Table 2 due to a small difference of

iVector extraction procedure in the final and preliminary systems.

2.3. Language modeling

We trained recurrent neural network language models (RNN-
LMs) by using the official transcription of training data. We
prepared two 2-layer LSTM-based models with forward and
backward direction. In decoding, average score of the official
LM, the forward RNN-LM and backward RNN-LM were used
with the weighting of 0.5:0.25:0.25. Note that we submitted
results without and with RNN-LM as shown in Tables 5 and 6.

2.4. Decoding

In decoding phase, we used N-best ROVER method to combine
the results from different AMs. We also found that the combina-
tion of recognition results from different microphone arrays was
very effective to improve the accuracy. Namely, we recognized
each array with each AM independently. Then, we combined all
results into the final result by using the N-best ROVER method.

For AM combination, we trained the AM in which all
RBiLSTMs were replaced into conventional LSTMs or conven-
tional BiLSTMs. We also trained AMs with 7,000 senones in-
stead of 3,500 senones as baseline. Therefore, we finally used
six types of AMs; {CNN-TDNN-RBiLSTM, CNN-TDNN-
LSTM, CNN-TDNN-BiLSTM} x {3500, 7000} senones.

We also propose “hypothesis deduplication”, in which if the
same words were recognized for overlapped utterances, recog-
nized words with lower confidence were excluded from the hy-
pothesis. This produced about 1.3 point of absolute WER im-
provement for the final system.

3. Experimental evaluation
Our final results are shown in Table 5 (category A without
RNN-LM) and in Table 6 (category B with RNN-LM). Our
best system in category B achieved 55.15% (single array) and
52.38% (multiple array) of WERs for development set, which
was about 35% better than the baseline [1]. In addition, our
best system achieved 48.20% (single array) and 48.24% (multi-
ple array) of WERs for evaluation set, which were the 2nd best
result in the CHiME-5 competition.

One notable point is that, contrary to our expectation, mul-
tiple array combination had almost no effect on evaluation set.
Especially, array combination even degraded the performance
for kitchen and dining scenarios of session S21. It could be be-
cause the reference-array position was almost optimal for that
session. One another notable point is that RNN-LM was effec-
tive for all environments without no exception. We were able
to confirm the robustness of RNN-LM for this highly natural
conversation. Overall, our system showed very competitive re-
sults in the competition, which supported the effectiveness of
our proposed techniques.

Table 5: WERs (%) for the category-A best system without
RNN-LM.

Track Session Kitchen Dining Living Overall

Single
Dev S02 66.37 56.79 50.89 56.40S09 55.89 55.94 51.57

Eval S01 59.42 44.18 63.85 50.36S21 52.11 42.14 46.71

Multiple
Dev S02 61.05 54.56 50.47 54.00S09 51.87 52.46 52.48

Eval S01 59.82 43.59 62.28 50.59S21 54.70 44.12 45.95

Table 6: WERs (%) for the category-B best system with RNN-
LM.

Track Session Kitchen Dining Living Overall

Single
Dev S02 65.13 55.42 49.54 55.15S09 55.24 54.37 50.15

Eval S01 57.62 41.81 62.33 48.20S21 49.68 39.78 44.59

Multiple
Dev S02 59.31 52.96 48.95 52.38S09 50.64 50.69 50.46

Eval S01 57.01 41.22 60.67 48.24S21 51.59 42.17 43.82
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