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Abstract

In the submitted system to CHiME-5 challenge, we propose
front-end enhancement of the beamformed array utterances to
mitigate mismatch conditions between close-talking utterances
and array utterances. Our initial experiments showed that an
Acoustic Model trained by using only close-talking microphone
utterances gave a superior performance than the baseline acous-
tic model when tested using close-talking utterances of the de-
velopment set. Taking this cue, we explored the hypothesis that
if array utterances are mapped to corresponding close-talking
utterances, the system trained using only worn utterances will
perform better. Towards this end, we trained a Time Delay Neu-
ral Network De-noising autoencoder (TDNN-DAE) using non-
overlapping speech close-talking microphone utterances (tar-
gets) and their corresponding beamform utterances. However,
the proposed system could not outperform the baseline.

1. Background

CHiME-5 database [1] includes conversational speech collected
using close-talking and distant multi-microphone in everyday
home environments. The baseline automatic speech recogni-
tion (ASR) is trained using around 149k utterances from the
close-talking microphone (also called as binaural or worn mi-
crophone. Henceforth called worn microphone for the sake of
brevity) and a random set of 100k utterances from the distant ar-
rays. For our experiments, we have used the Gaussian Mixture
Model (GMM) ASR baseline. This is a standard triphone based
acoustic model (tri3) with linear discriminant analysis (LDA),
maximum likelihood linear transformation (MLLT), and fea-
ture space maximum likelihood linear regression (fMLLR) with
speaker adaptive training (SAT). !

The Word Error Rate (WER) for the GMM baseline for
worn microphone development set was found to be 71.62%. An
initial experiment by training the ASR by using only worn mi-
crophone utterances and testing using only worn microphone
utterances showed that the system performance improved to
67.15%. This performance improvement can be attributed to re-
duction in acoustic mismatch conditions between the worn and
array microphones. To this end, we propose that an acoustic
model trained by using worn microphone utterances will per-
form better if the test data is acoustically similar to worn micro-
phone data. Our submission to the 5" CHiME Challenge’s Sin-
gle Device Track, Ranking A (constrained LM) uses a TDNN-
DAE similar to [2] to enhance the beamformed utterances.

I The results for the more resource greedy LF-MMI-TDNN baseline
could not be included in the paper as they were not ready at the time of
submission

2. Contributions

‘We have trained a beamform to worn utterance TDNN-DAE [2]
using Kaldi Toolkit [3]. (Please refer to Figure 1)

non-overlapping corresponding
worn utterances ——>ITDNN-DAE 1€—— beamform

(targets) utterances

Figure 1: Training the TDNN-DAE

3. Experimental evaluation

We have trained a four hidden layer TDNN-DAE with layer-
wise contexts organized as [-2,2] [-1,2] [-3,3] [-7,2] {0} and in-
put temporal context of [-13,9]. This configuration is similar to
TDNN proposed in [2]. The TDNN-DAE is trained using 100k
beamformed segments and the targets are their corresponding
worn utterances. However, as the data is a truly conversational
speech in a dinner party scenario, there is lot of overlapping
speech. Overlapping speech means that more than one speaker
speaks at a time. We do not expect the proposed front-end en-
hancement to do speaker separation. Hence we train the TDNN-
DAE using non-overlapping speech. The next section describes
the data preparation.

3.1. Data preparation

In the first step, we identify non-overlapping utterances and
then in the next step find their corresponding beamformed ut-
terances.

3.1.1. Step 1 :Identify non-overlapping utterances

In the first stage, we obtain worn utterances that are non-
overlapping i.e no two speakers speak at the same time. This is
done by splitting all the worn microphones training utterances
(train_worn) into different sessions. Each session is then the
sorted in ascending order of time. Later, we use a simple al-
gorithm, to decide whether a segment is non-overlapping. Sup-
pose we have N utterances indexed as ¢ = 1,2,3,...N. An
utterance x (i) is said be non-overlapping if the start time of the
next utterance x (% + 1) does not lie in the range of start and end
times of utterance x (). This method can be easily explained
using the following flowchart:
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Step 1:
Split all train_worn utterances into different sessions
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Step 2 :
Sort each session in ascending order of time
Step 3 :
Find if the segment is non-overlapping.

If N utterances are indexed as ¢ = 1,2,3,...N, then an
utterance x(i) is non-overlapping if start_time (z(i + 1))
does not lie in the range start_time (z(i)) to end_time (z(2))
\ 7

Flowchart 1: Obtaining non-overlapping worn utterances

3.1.2. Step 2: Obtain worn to beamform mappings

The second stage of data preparation is to find beamformed ut-
terances corresponding to obtained non-overlapping worn utter-
ances. These can be easily obtained using timings and utterance
transcriptions. Thus, we get mappings between beamform and
worn segments.

3.2. Training TDNN-DAE

A random set of 100k * such mappings is used to train the
TDNN-DAE. The worn utterances act as targets for the TDNN-
DAE (Refer Figure 1). The development set after beamforming
is enhanced using this TDNN-DAE. We decode the enhanced
utterances using the baseline ASR (System 1, Figure 2) and an-
other ASR trained using only worn utterances (System 2, Figure
3).
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Figure 2: Block diagram of System 1 (Using CHIMES baseline
Acoustic Model) with TDNN-DAE
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Figure 3: Block diagram of System 2 (using only worn utter-
ances for Acoustic Model) with TDNN-DAE

2We did not observe any significant improvement by using more
data

4. Results

The overall WER(%) for both the systems without using
TDNN-DAE is shown in Table 1. We observe that the enhanced
features do not perform well when using worn only AM for
training (System 2) as compared to baseline AM (System 1).
This maybe because System 2’s AM is trained using very
less data, only 149k utterances, which is 100k less utterances
than System 1. We tried to re-train the AM by passing 100k
utterances of array train data, but we did not observe any
improvement.

The overall WER(%) for both the systems using TDNN-

DAE is shown in Table 2. We expect that the enhanced utter-
ances are more matched to the worn only AM and the results
are in sync. System 2 performs better than System 1 by 1.54%
absolute WER. Table 3 gives the results for the proposed Sys-
tem 2 with TDNN-DAE per session and location.
Tables 1-3 are the results obtained after scoring the ASR hy-
pothesis locally. Table 4 shows the official results given by the
organisers. The mismatch in entries of Table 3 and 4 are due to
a file mixup at the time of result submission.

Table 1: Overall WER (%) for the systems tested on the devel-
opment test set without using TDNN-DAE

Track ‘ System ‘ WER

System 1 | 90.82
System 2 | 92.31

Single

Table 2: Overall WER (%) for the systems tested on the devel-
opment test set using TDNN-DAE

Track ‘ System ‘ WER

System 1 | 95.52
System 2 | 93.98

Single

Table 3: Results for the System 2 (using only worn utterances
Jfor Acoustic Model) with TDNN-DAE. WER (%) per session
and location together with the overall WER.

Track | Session ‘ Kitchen ‘ Dining ‘ Living ‘ Overall
. S02 | 97.10 93.53 | 93.21
Single | Dev 509‘ 93.43 ‘ 93.23 ‘ 92.06 ‘ 93.98

Table 4: Official Results for the System 2 (using only worn ut-
terances for Acoustic Model) with TDNN-DAE. WER (%) per
session and location together with the overall WER.

Track | Session ‘ Kitchen ‘ Dining ‘ Living ‘ Overall
: S02 | 99.10 | 96.23 | 9435

Single | Dev 509‘ 95.02 ‘ 94.77 ‘ 9238 ‘ 93.52
SO1 | 10090 | 91.76 | 139.25

‘ Eval ‘ s21 ‘ 100.38 ‘ 97.55 ‘ 105.22 ‘ 104.67




5. Conclusion and ongoing work

A performance improvement is observed when using TDNN-
DAE enhanced features with worn only AM. However, the re-
sults do not look very promising. One of the key things we did
not take into consideration is the inherent reverberation in the
array microphone utterances. Our ongoing experiments aim at
evaluating the effectiveness of the proposed method after per-
forming dereverberation as a pre-processing step.
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