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Abstract

This report describes our submission to the fifth CHIME Chal-
lenge. The main technical points of our system include the
deep learning based speech enhancement and separation, train-
ing data augmentation via different versions of the official train-
ing data, SNR-based array selection, front-end model fusion,
acoustic model fusion, and language model fusion. Tested on
the development test set, our best system for single-array track
using official LM has yielded a 37.7% WER relative reduction
over the results given by official baseline system.

1. System Overview

CHIiME-5[1] challenge features a single-array track and a
multiple-array track, and we participate both of them. A uni-
fied framework of training process is given in Figure 1. As we
can see, it contains several main parts including deep-learning
based speech saparation (SS Model), speech enhancement (SE
Model), multi-channel based WPE denoising, beamforming and
acoustic model training. For the front-end, we fisrt conduct
data simulation to augment data size by estimating impulse
responses between binaural data and far-field data. Mean-
while, we apply a conventional multi-channel noise reduction
using log-spectral amplitude [2] which is based on generalized
weighted prediction error (GWPE) [3] and independent vec-
tor analysis (IVA) [4]. With the denoised data, we can build
the following speech enhancement model and speech separation
model which are both based on deep-learning techniques. Af-
ter all, each method of these frond-end techniques can provide
processed data of official original training data, add increase the
diversity of original data. Using the final augmented data, five
types of acoustic model are trained as the back-end system.
The testing phase can be divided into two scenarios: single-
array track and multiple-array track. For each track, two sep-
arate rankings will be produced: Rank A compares systems
which are based on conventional acoustic modeling and using
the supplied official language model, while Rank B has no such
limitations. Speaking of single-track, the same conventional
multi-channel preprocessing described above is first conducted.
Then, speaker-dependent SS models are trained with the de-
noised data for each speaker among the test set. The outputs of
SS model and SE model, are integrated together to provide nec-
essary initialization information for beamforming. After that,
the beamformed speech is sent to back-end acoustic models for
recognition. What’s more, several acoustic models are fused at
the state-level. However, for Rank B, the first-pass decoding is
performed with the HMM and 3-gram to generate the lattice as
the hypotheses, which are served for the second-pass decoding

with a LSTM-based LM.

In multiple-array track, we first use the SE Model to es-
timate the signal to noise ratio (SNR) for each array, two ar-
rays with maximum SNRs are selected. The rest procedures are
almost the same with single-arrary track, conventional multi-
channel preprocessing is first used. Then, speaker-dependent
SS model are trained with the denoised data for each speaker
among the test set. The outputs of SS model and SE model are
integrated together to provide necessary initialization informa-
tion for beamforming. The beamformed speech is sent to back-
end acoustic model for recognition. Multiple acoustic models of
both two selected arrays are fused at the state-level. For Rank B,
the first-pass decoding is performed with the HMM and 3-gram
to generate the lattice as the hypotheses, which are served for
the second-pass decoding with a LSTM-based LM.

More details will be introduced in the following subsec-
tions.
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Figure 1: An illustration of unified training stage, including
front-end processing, data augmentation and acoustic model-

ing.

2. Main contributions

First of all, due to rules defined by official[1], systems are al-
lowed to exploit knowledge of the utterance start and end time,
the utterance speaker label and the speaker location label. It’s
allowed to use binaural data and far-field data in the training set.
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2.1. Training Stage

For acoustic model training, the procedures are the same for
both single-array track and multi-array track. Here we introduce
the details of training stage in some subsections separately.

2.1.1. Multi-channel preprocessing

For CHIiME-5, we first utilize a multi-channle preprocessing
step by traditional methods of signal process, which doesn’t rely
on training. It uses log-spectral amplitude [2] which is based
on generalized weighted prediction error (GWPE) [3] and in-
dependent vector analysis (IVA) [4]. The goal of this step is
to suppress some obvious noises and output the single-channel
signals for the following stage. The preprocessing is simple but
important for our entire system.

2.1.2. Speech enhancement model training

A deep-learning based speech enhancement method is adopted
here, namely ‘SE Model’. To simulate the training data, pure
noise data is first extracted from official training set, in the
guidence of human annotations. These segments are further fil-
tered by using offical ASR model to make sure no textual sig-
nals within them. To be better consistent with the processed
in testing phase, the multi-channel preprocessed data in Sec-
tion 2.1.1 is taken as the target ‘clean’ data instead of binaural
data. Then, target speech is corrupted with noise segments at
different SNR levels. A densely connected progressive learn-
ing based speech enhancement model [5] is used to predict the
ideal ratio masks (IRM) of speech. Since the speech quality
is extremely low in far-field conditions, the output masks from
speech enhancement models are only used as one kind of refer-
ence information to beamforming.

2.1.3. Speech separation model training

The recogniton of overlapping regions is one of the most critical
problem in CHiME-5 challenge, however, overlapping speech
occupies a large propotion. Firstly, non-overlapping regions
of each speaker are detected and selected as the source data.
They are mixed together to build speaker-dependent training
data[6], where each target speaker is corrputed with other in-
terference speakers among one same session. To overcome
the low-resource problem of non-overlapping data, a two-stage
speaker-dependent speech separation system is proposed. Sim-
ilar to the discussion about different learning targets in [7], in
the first stage the learning target is defined in an intermediate
mapping form:

B =3 (log (e, )+, )~ 20.0)) ()
t,f

where 2"™M(t, f) is the estimated IRM with the logarithm

operation and the input LPS features x'*5(¢, f) to generate
the masked LPS features. The trainded models, denoted as
‘SS1’ models, are applied to original data, including both non-
overlapping and overlapping parts. After that, the new separated
data is used as source data to generate new speaker-dependent
training data. As for stage 2, we train the ‘SS2’ models with
another learning target:

Brv=Y (2"‘“‘(1&, £) — 2™, f))2 2)
t,f

where 2™M(¢, f) and 2®M(t, f) are the estimated and the refer-
ence IRMs, respectively. For model architecture in both stages,

we utilize a two layer Bi-directional long short-term memory
(BLSTM) as the speech separation model, each direction with
512 cells. 257-dimensional LPS feature are ultilized here as the
acoustic feature to facilitate recovering waveforms, 7-frame ex-
pansion is used in the input. The computational network toolkit
(CNTK) [8] is used for training. After separation stage, the
resulting waveforms can be directly sent to back-end acoustic
models, or provide only masks to the following beamforming.

2.1.4. Beamforming

Given the estimated masks from speech enhancement and sep-
aration models introduced above, we extend the complex Gaus-
sian mixture model(CGMM) in[9] from 2 Gaussian mixtures
to 3 Gaussian mixtures. Those mixtures indicate noises, tar-
get speaker and interference speakers, respectively. It’s the first
time to address those three factors simultaneously in realistic
conditions. The masks are adopted as the initialization state for
the EM algorithm. Final masks are sent to generalized eigen-
value decomposition (GEVD) beamformer[10]. So far, the en-
tire frond-end stage finishes and outputs the separated wave-
form for recognition.

2.1.5. Data compilration

As shown in Figure 1, the final training data of acoustic model
is largely augmented by our different processing methods. It
mainly contains several parts as follows:

* Original binaural data

* The far-field data after multi-channel preprocessing de-
scribed in Section 2.1.1

* The separated data from speech separation models de-
scribed in Section2.1.3

* Data after beamforming described in Section2.1.4

* Simulated far-field data by using estimated impulse re-
sponses and binaural data

2.1.6. Acoustic model

In the back-end, we use five different kinds of acoustic models.
The first two are based on lattice-free maximum mutual infor-
mation (LF-MMI) training [11], including a conventional 5-
layer BLSTM network and CNN-TDNN-LSTM (2-layer CNN
+ 9-layer TDNN + 3-layer LSTM) network. Both of them are
trained on Kaldi Toolkit [12], with the input combining 40-
dimensional MFCC feature and 100-dimensional i-vector.

Futhermore, three cross-entropy based acoustic models are
trained by our self-developping tools, while the model in-
put changes to the combination of 40-dimensional log mel-
frequency filterbank (LMFB) feature and raw waveform. They
are conventioanl CLDNN [13], 50-layer deep fully CNN [14]
and 50-layer deep fully CNN with gate on feature map. They
are listed as follows:

* LF-BLSTM: 5 layers BLSTM network with LF-MMI
training

* LF-CNN-TDNN-LSTM: 2-layer CNN + 9-layer TDNN
+ 3-layer LSTM network with LF-MMI training

* CNNI1: CLDNN (CNN-BLSTM-DNN) with CE training
* CNN2: 50-layer deep fully CNN with CE training

* CNN3: 50-layer deep fully CNN using gating mecha-
nism with CE training



2.1.7. Language model

Besides the language models of official baseline, we build a
conventional LSTM-based language model for Rank B.

2.2. Testing Stage

Depend on two different tracks in CHiME-5, the testing stages
are different as well.
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Figure 2: An illustration of testing stage in single-array track.
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2.2.1. Single-array track

Figure 2 shows the flowchart of single-array testing stage. All
those components remain the same with training stage in Sec-
tion 2.1, including multi-channel processing, SE models and
beamforming method, except for ‘SS models’. Since SS models
are speaker-dependent, they should be trained newly on testing
sessions. In single-array track, the training of SS models only
uses the reference array data. After all, the beamformed data
is recognized by different acoustic models introduced in Sec-
tion 2.1.6. Several acoustic models are fused at the state-level.
However, for Rank B, the first-pass decoding is performed with
the HMM and 3-gram to generate the lattice as the hypotheses,
which are served for the second-pass decoding with a LSTM-
based LM.
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Figure 3: An illustration of testing stage in multi-array track.

2.2.2. Multi-array track

Different from single-array track, there is one additional step
which is about array selection. Provided masks from deep-
learning speech enhancement models, we select two best arrays
in terms of signal to noise ratio (SNR) and signal to interference
plus noise ratio (SINR). Two best arrays among all devices are
selected. All precedures in single-array track are conducted on
these two best arrays. At the end, different versions of output
data are fused at the state-level after acoustic models. However,
for Rank B, the first-pass decoding is performed with the HMM
and 3-gram to generate the lattice as the hypotheses, which are
served for the second-pass decoding with a LSTM-based LM.

3. Experimental evaluation
3.1. Front-end experiments

First of all, we present the front-end results on official base-
line in single-array track. Time Delay Neural Neural Network
(TDNN) recipe [11] using lattice-free maximum mutual infor-
mation (LF-MMI) training, is used here. The trainining data
keeps the same with official recipe in KALDI [12], which uses
both binaural data and far-filed data with speech perturbation.
The front-end uses a weighted delay-and-sum beamformer by
Beamformlt toolkit [15] as a default multichannel speech en-
hancement approach. More details can be found in [1]. Com-
pared with the official reported WER of 81.3% , our imple-
mented version yields a comparable WER of 81.1%, as listed in
Table 1. ‘Single-channel” denotes the results of processed data
which uses only single-channel speaker-dependent speech sep-
aration models described in Section 2.1.3. Futhermore, given
the single-channel separation masks and enhancement masks,
the beamformed data yields the results in the last row, namely
‘Multi-channel’. It’s observed that both stage are apparently ef-
fective in terms of WER reduction.

So far, testing data processed by those frond-end processing
procedures is fixed in the rest of this paper, which denotes the
output data after multi-channel beamforming.

Table 1: WERs (%) for the development set using only the ref-
erence array with official acoustic baseline.

WER(%) on . .. .. Relative
Dev set Kitchen | Dining | Living | Ave Gain(%)

Official 85.0 79.7 784 | 81.1 -

Single-channel 80.2 76.3 712 | 75.7 6.7

Multi-channel 72.3 67.7 63.3 67.7 16.5

3.2. Data augmentation

In Session 02, we evaluate different versions of training data in
terms of WER. As listed in Table 2, the first row presents the
subset of the best ‘Multi-channel” results in Section 3.1. In the
second row, we remove the speech perturbation and use only
original binaural data (64h) and far-field data(110h). The WER
increases from 65.3% to 66.7%. Then we add 120 hours of sim-
ulated data by the estimated impulse responses, namely ‘Simu
data’. It effectively reduces the WER to 64.9%. Futhermore,
to better keep consistent with our speech separation models, we
add separated speech data of far-field data in original training
set, denoted as ‘SS data’. The final performance yields the WER
of 64.1%.

Hence, the training data is fixed, including binaural data,



far-field data, multi-channel processed data, simulated far-field
data, and separated far-field data, which is about 530 hours.

Table 2: WERs (%) for Session 02 which uses different versions
of training data.

WER(%) P05 | P06 | P06 | PO7 | Ave

on S02
Baseline data 68.7 | 61.7 | 66.3 | 66.6 | 65.3
No perturbation | 69.2 | 65.5 | 66.1 | 66.0 | 66.7
+ Simu data 68.1 | 63.6 | 64.0 | 63.9 | 64.9
+ SS data 684 | 624 | 62.2 | 63.4 | 64.1

3.3. Acoustic models

As shown in Figure 4, we have compared WERs of acoustic
models and model ensembling on development set, for Rank A.
The result of official baseline acoustic model is shown in blue
bar. Motivated by the findings in Section 3.2, we first use the
newly fixed training data with new model architectures instead
of LF-TDNN, including LF-BLSTM and LF-CNN-TDNN-
LSTM. They are all built with lattice-free maximum mutual in-
formation (LF-MMI) training method by KALDI tookit. As we
can see, the LF-CNN-TDNN-LSTM yields better results than
LF-BLSTM.

Performance of three CNNs is comparable due to their big
architecture similaritities, so we directly present the ensembling
results of three CNNs. Futhermore, we ensemble all five kinds
of acoustic models via the state posterior averaging and lattice
combination. Compared with official acoustic model, the final
WER is reduced from 67.7% to 50.6%, indicating a relative re-
duction of 25.3%. This large improvement can be attributed
to both data augmentation , acoustic modeling and ensembling.
Compared with official baseline with a WER of 81.3% reported
in [1], our system achieves a WER relative reduction of 37.7%
in Rank A.
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Figure 4: WERs comparison between acoustic models and
model ensembling on development set, for Rank A. Note the
official-AM is trained with original training data, while others
are trained using newly fixed training data in Section 3.2.

3.4. Language model

Since the training material is extremely rare, our LSTM-based
LM yields slightly better results in development set, as listed
below.

Table 3: WERs (%) of development set between official LM and
our LSTM-based LM.

WER(%) on . .. ..
Dev set Kitchen | Dining | Living | Ave
Official 55.6 524 45.0 | 50.6
Ours 55.1 51.7 447 | 50.2

3.5. Results summary

To summarize, in the following tables we present the perfor-
mance details of our best system tuned on the development test
set, with its corresponding results on the evaluation test set.
The only difference between Rank A and Rank B is the lan-
guage model, which yields slightly better results when using
LSTM-based model. It’s surprising that utilizing multiple ar-
rays doesn’t bring any performance improvements on the eval-
uation test set, while it’s significant when using single reference
array. It’s worth exploring the reason in the future. After all, the
final results take the first place among all submitted system in
all four tasks.

Table 4: WERs (%) of the best system tuned on the development
test set, with its corresponding performance on the evaluation
test set, for Rank A.

Track Session Kitchen | Dining | Living | Ave
S02 57.8 49.4 41.8

Single- | P [S00 [ 524 568 | 514 | >0

Array Eval S01 56.6 38.7 56.7 46.4

S21 50.4 414 42.8

S02 | 463 360 | 411
Multiple- | P [500 T 46.1 36 | 505 | PO

Array SOT | 587 380 | 558
Bval - 525 16 | 423 | 400

Table 5: WERs (%) of the best system tuned on the development
test set, with its corresponding performance on the evaluation
test set, for Rank B.

Track Session Kitchen | Dining | Living | Ave
S02 57.4 48.5 41.5

Single- Dev S09 51.8 56.4 51.1 50.2

Array Eval S01 56.2 38.3 56.5 46.1

S21 50.2 41.4 42.4

S02 | 454 457 | 407
Multiple- | PV [500 | 45,6 434 | 494 | PO

Array SOT | 58.1 371 | 55.1
Eval - T25 411 17 ] 461
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