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Abstract

This paper summarises the Toshiba entry to the single-array
track of the CHIME 2018 speech recognition challenge. The
system is based on conventional acoustic modelling (AM),
where phonetic targets are tied to features at the frame-level,
and use the provided tri-gram language model. The system is
ranked in category A that focuses on acoustic robustness. Ar-
ray signals are first enhanced using speaker dependent gener-
alised eigenvalue (GEV) based beamforming. Two different
acoustic representations are then extracted from the enhanced
signals: i) log Mel filter-bank and ii) subband temporal enve-
lope (STE) features. Separate acoustic models, trained on each
set, are used for lattice combination. The AM combines con-
volutional and recurrent architectures in a single CNN-BLSTM
model. Speaker adaptation, limited to vocal tract length normal-
isation (VTLN), de-reverberation and speaker suppression are
also considered. Following system combination, the Toshiba
entry achieves 60.8% word error rate (WER) on the develop-
ment (dev) set and 56.5% WER on the evaluation (eval) set re-
spectively. The system is ranked 4" in the A category.

1. Introduction

CHIiME 2018 targets distant conversational ASR using micro-
phone arrays in everyday home environments. The challenge
had a single array track and a multiple array track. The sin-
gle array track specifies the reference array to use the test data
from. On the other hand, data from all the arrays can be used
at test time in the multiple array track. The submitted systems
are ranked in categories A or B based on the type of acous-
tic and language models used for building the ASR system. If
conventional frame-based acoustic models are used along with
the provided tri-gram language model, the systems are ranked in
category A. The systems in category B have no restrictions: they
can explore any acoustic and language model and can also use
additional external training data. More details about the train-
ing data and the challenge instructions can be found in [1]. The
Toshiba entry to the challenge focuses on reference array track
and uses conventional frame-based AM and the provided LM,
hence will be classed into category A. The rest of the paper is or-
ganised as follows: first, the paper describes the system’s com-
ponents, that include enhancement, front-end, speaker adapta-
tion and system combination, and then presents how these com-
ponents were combined to reach the final submission system.

2. Baselines from the Challenge

The Challenge organisers provided a baseline system developed
in KALDI [2]. A time-delay neural network (TDNN) [3] is used
as the AM, which is trained using lattice-free (LF-) MMI [4].
The TDNN AM has 8 ReLU batch normalisation layers with

the following context on each of the layers: [-2:2],0,[-1:1],0,[-
1:1]1,0,[-3,0,31,[-3,0,3],[-6,-3,0]. The first entry shows the con-
text used on the input layer (2 frames to the left and 2 frames
to the right including the centre frame). The models are trained
using the chain framework in KALDI. A lexicon and language
model are also provided by the challenge organisers [1]. The
baseline AM is trained using data from the worn (W) micro-
phones and randomly chosen 100k utterances from the all the
available arrays (U). The system performs speed-perturbation
(sp) [5] to increase the training data by three folds and includes
i-vectors [6] to perform speaker adaptation. The performance
of the baseline system is presented in Table 1.

Table 1: Baseline performance (%WER) of TDNN acoustic
models on CHiMES on the dev set.

[ CHIME5 | GMM-HMM [ TDNN |

worn (W) 71.8 47.7
array (U) 91.2 80.8

The GMM-HMM is a speaker adaptive training (SAT)
model using feature space maximum likelihood linear regres-
sion (FMLLR). Though the Challenge only ranks the perfor-
mance of the system based on the %WER’s on the array data,
the performance of the worn data is also presented to show the
complexity of the task. One can observe that the performance
of W data is already close to 50% WER. The performance of
U data gets worse compared to the W data as we move from a
close talk to a distant speech recognition task.

2.1. Effect of Speed perturbation and i-vectors

An investigation is performed to understand the contribution of
speed-perturbation and the use of i-vectors towards ASR per-
formance. The performance using the TDNN AM is presented
in Table 2.

Table 2: Performance (%WER) on TDNN AM using speed-
perturbation and i-vectors on the array data.

l dev-U [ sp [ i-vectors [ % WER ‘

- - 83.8
- + 80.9
+ + 80.8

One can observe that turning off sp did not have much ef-
fect on the ASR performance of the U data, while turning off
the i-vectors seems to degrade the performance. So for all ini-
tial investigations, sp is turned off (for a faster turn around time
during AM training), but i-vectors are used into the system de-
velopment pipeline.



3. Acoustic models

A variety of AMs were investigated to see if they have an ad-
vantage over the baseline TDNN AMs. In this direction, we
explored both uni-directional and bi-directional long short-term
memory networks (LSTM) [7]. Convolutional neural networks
(CNN) [8] in combination with LSTMs were also explored. The
performance results of different architectures are presented in
Table 3. For all the experiments presented here, sp is turned off
and i-vectors are used for speaker adaptation.

Table 3: Performance (%WER) comparison of different AM ar-
chitectures.

| W+U100k [dev-Ul

TDNN 80.9
LSTM 76.9
BLSTM 76.6

CNN-LSTM 75.3
CNN-BLSTM | 74.9

From Table 3, one can observe the progression of the
change in performance for U data. All the acoustic models are
trained using W+100k data. The CNN-BLSTM AM consist-
ing of 2 CNN layers at the front followed by 3 BLSTM layers
provides the best performance. The CNN layers are 2D-CNN
layers with 3x3 filter kernels and having 256 and 128 filters re-
spectively. Each BLSTM layer has a cell dimension of 1024
and recurrent projection of 256. The i-vectors on the input are
bypassed from the CNN layers and presented along with the
output of CNN to the BLSTM layers. A context of 40 frames
(including both left and right) is used for the BLSTM layers.
Based on these results, the CNN-BLSTM AM was chosen to be
the AM for our submission system.

4. Front-end: FBANK and STE

Two types of acoustic features were used: log-Mel filter-bank
(FBANK) and subband temporal envelope (STE) [9] features.
In both cases 40 coefficients are extracted per frame. In con-
trast to conventional FBANK features which extract informa-
tion from spectral domain, STE features extract information
from slowly-varying temporal envelopes in the frequency sub-
bands of speech. In this respect, speech signal is filtered with
a Gammatone filter-bank. STEs are then extracted by apply-
ing full-wave rectification and low-pass filtering, with a cut-off
frequency of 50 Hz, to the subband signals. The features coeffi-
cients are then computed from overlapping frames of the STEs
[9]. The STE features extraction pipeline is depicted in Fig.
1. More details about these features can be found in [9]. Both
FBANKS and STEs are mean-normalised on a per-segment ba-
sis. The motivation for using two feature sets is the expected
gain from combining complementary information. The per-
formance of both the features are presented in Table 4. One

Table 4: Performance (%°WER) of FBANK and STE features.

[ CNN-LSTM | FBANK | STE |
[ W+UI00k | 753 [ 75. |

can observe that both features have similar accuracies and per-
forming lattice combination can be advantageous. Though most
of the investigations are presented using FBANK features, the
final submission systems will have a combination of systems
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Figure 1: Subband temporal envelope (STE) features extraction
pipeline [9].

trained using both FBANK and STE features. Unless specified,
all the results presented in the discussion will be either MFCC
or FBANK features.

5. Separate AMs for each array

Instead of using data from all the arrays, separate AMs are
trained using data from each array. The motivation is to avoid
the problem of synchronisation across arrays and perform sys-
tem combination on the ASR outputs of each of these systems.
The AMs are trained using data from a specific array along with
the W data. A CNN-BLSTM AM architecture is employed. The
performance on the dev set is presented in Table 5.

Table 5: Performance (%WER) of AMs trained using data from
specific arrays.

[ CNN-BLSTM | no-sp | sp |

W+U100k 74.9 -
W+U01 - 71.4
w+U02 73.8 | 71.7
w+U04 73.8 | 70.7
W+U05 742 | 72.6
W+U06 73.7 | 72.1
W+Uall - 70.1

One can observe that the performance of individual arrays
is better than training the AM with a mix of data from all the
arrays. The amount of training data from each array is more
than W+U100k and could be a possible reason for better per-
formance. It is interesting to note that the performance on the
dev set is very similar for all the AMs trained using data from
specific arrays. Adding sp data into training the AM further
improved the performance. For the rest of the experiments pre-
sented in the paper, sp is always used for AM training. The
AM trained using W+Uall (worn and all the data available from
the arrays) seem to perform the best, also indicating that having
access to more training data improves the AM.

6. Speech enhancement
6.1. Speaker dependent GEV beamforming

A variant of neural net (NN) supported GEV-beamforming in
STFT domain is first applied [10, 11]. The objective is to en-
hance the target speaker while suppressing background inter-
ference (noise and competing speakers). The time-frequency
masks for speech and noise are estimated from the input speech
using an NN model. These are subsequently modified using
speaker identity information (Fig. 2). The dominant speaker in
each frame was estimated using a GMM classifier (speaker clus-
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Figure 2: Proposed speaker dependent GEV-based speech enhancement.

tering), while the speaker labels were extracted from the tran-
scriptions. The speech mask was set to zero in frames where the
dominant and the target speaker differ, and the noise mask was
set to one where competing and target speakers overlap.

The NN model was trained with worn microphone data
from the train set of CHiME-5. Single speaker segments were
collected, and noise reduction using L and R channels was ap-
plied to produce the “clean” speech. L channel data of non-
speech portions represents noise. Noisy speech data was sim-
ulated using the clean speech and the noise, and ideal binary
masks for speech and noise were generated for training the NN.
The input feature was STFT power spectra with 2827 dimen-
sions (257 frequency bins x 11 frames). The NN was fully-
connected comprising 4 hidden layers (1600 nodes) with sig-
moid activations in the output layer and eLU elsewhere. The
output layer had 514 nodes (257 frequency bin X 2 masks).
GMM training and clustering were performed using speech data
averaged over the microphones of the reference array. The fea-
tures were 25-dimensional MFCCs, and the GMM had 16 com-
ponents. Four clusters were used (one for each speaker).

The initial GMM for each speaker was trained with single
speaker portions of the signal according to the transcriptions.
Thereafter, clustering and updating the models were repeated
until convergence. The frames in the single speaker segments
were fixed to the cluster of the active speaker. Those in the other
segments were clustered to one of the speakers whose utterance
labels included the time frame according to the GMM likeli-
hood. Frames in which the normalised likelihood fell below 0.9
were removed from the clusters. A GMM was trained for each
reference array using utterances from the given array only.

Table 6: Performance (%WER) of AMs trained using GEV en-
hanced data for specific arrays.

| CNN-BLSTM [ nosp [ sp ‘

W+U01 69.2 | 674
Ww+U02 67.3 | 67.0
W+U04 68.1 | 66.1
W+U05 70.1 | 66.9
W+U06 68.5 | 66.3
W+Uall 66.7 | 64.9

The proposed enhancement is applied both in training and
recognition. The ASR performance using the proposed speaker
dependent GEV are presented in Table 6. One can observe that
speaker dependent GEV helps improve the ASR performance
when compared with the case without GEV enhancement (Ta-
ble 5). The AM trained using data from all the arrays performs
best as also observed in Table 5.

6.2. Enhancement using WPE

Physical separation on the order of a few meters between the
speakers and the microphone arrays results in noticeable re-
verberation. Signal de-reverberation prior to feature extraction
is, thus, expected to improve recognition performance [12]. A
fundamental challenge in this context is that in the presence
of overlapped speech the expected gain from de-reverberation
is limited. Due to time constraints, reverberation and speaker
overlap are treated as separate problems in this system.

The weighted prediction error (WPE) is a prominent ap-
proach to reducing late reverberation [13]. It has been used
successfully in past speech recognition challenges [14]. The
method in its original formulation relies on iterative estimation
(based solely on the target utterance) to compute the optimal
de-reverberation filter coefficients. It is observed that for short
utterances the iterative approach becomes unstable and ineffec-
tive. This is problematic in the context of CHiMES, where due
to the spontaneous interaction among the participants, a large
portion of the utterances are short.

A possible work-around is seen in the use of a neural-
network (NN) supported WPE, which improves both stability
and performance [15]. A disadvantage in the formulation of this
method is the dependence on parallel training data, i.e., rever-
berant and “clean” (direct sound and early reflections) speech.
The close-talk CHiMES data is not well-suited for use as the
target “clean” speech suggesting that an alternative approach to
training the supporting NN is needed.

An in-house method for training the supporting NN was
developed. The approach is unsupervised as it does not require
parallel data or joint training with an acoustic model. Single-
channel de-reverberation on top of GEV-enhanced signals was
only considered in this context.

Table 7: Performance (%WER) of AMs using WPE.

[[CNN-BLSTM | no WPE | WPE |
[W+Uall(+sp) | 649 | 633 |

The performance of the system is presented in Table 7.
One can observe that enhancing the train set with WPE and re-
training the acoustic model improves the system performance.
Of all the above systems, this system has the best performance.

6.3. Enhancement using Speaker Suppression

The test utterances that were enhanced using GEV could not
completely separate overlapping speakers. A mask based
speaker suppression approach has been attempted to see if it im-
proves the system performance. The masks were estimated over
time using a frame-wise RNN speaker classifier trained on non-
overlapping portions of speech extracted from the transcription



files. MFCCs (dimension 24) with delta and delta-delta were
used as acoustic features; they were extracted from 32-ms of
speech every 16-ms. Speaker predictions were made using the
maximum likelihood criterion, followed by 13 taps median fil-
tering. The frames where the target speaker was dominant had
gain one, and the frames where the interfering speakers were
dominant had gain 0.001. Finally, all mask weights were post-
filtered using double exponential smoothing with the attack and
release constants of 0.1 and 0.99, respectively. The performance
of the proposed approach is presented in Table 8.

Table 8: Performance (%WER) of AMs using speaker suppres-
sion.

[ CNN-BLSTM [ noSS | SS |
[ W+Uall (+sp) | 64.9 [ 648 |

7. Speaker adaptation using VTLN

VTLN is a simple technique for speaker adaptation [16]. It
scales the frequency axis linearly to normalise variability in the
speech signals caused by speaker differences. The scaling fac-
tor is estimated using a grid search in the range from 0.85 to
1.25 in steps of 0.01. The warped features, derived based on the
optimal scale factors, are used both during training and recogni-
tion. Estimation of the VTLN warp factors for the dev and eval
sets requires a two-pass approach. The performance of VTLN
is presented in Table 9.

Table 9: Performance (%WER) of AMs using VILN adaptation.

[[CNN-BLSTM [ no VILN | VILN |
[W+Uall¢sp) | 649 | 641 |

From the table, one can observe that VTLN improves the
performance of the system already enhanced with GEV. VTLN
estimation can be influenced by the overlap present in the input
speech. A better speaker separation or suppression approach
before VTLN estimation can further help improve the system
performance.

8. System Combination

Finally, the system combination of the above components is ex-
plored. A summary of the individual performance of various
components previously described is presented in Table 10.

Table 10: Summary of WER (%) on the development set.

Track | Data System | FBANK | STE
W+ U001 67.4 66.6
W +U02 67.0 65.8
W+ U04 66.1 66.0
W+ U05 66.9 65.6

Single | W+ U06 66.3 66.7
W + Uall C 64.9 -
W + Uall - SS D 64.8 -
W + Uall - VTLN E 64.1 -
W + Uall - WPE F 63.3 -

Systems were are also trained using sub-band temporal en-
velope (STE) features, other the FBANK features, only using

data from the individual arrays. The primary motivation is to
perform system combination on the ASR outputs. The Uall sys-
tems were developed only for the FBANK features due to time
constraints.

The system combination results are presented in Table 11.
Lattice combination on the individual arrays either FBANK (A)

Table 11: Performance of system combination on the develop-
ment set.

Systems combined System | WER
W + U[1-6] - FBANK A 63.0
W + U[1-6] - STE B 62.8
A+B 62.0
A+B+D+E+F 60.8

or STE (B) performed better than the systems trained using data
from all the arrays (C). Further combining A and B provided
further gains in ASR performance. The best performance is
achieved with the combination of ASR outputs from A, B, D,
E and F, which is our submission system. The breakdown, over
sessions, for the submission system are presented in Table 12.
System C is excluded from the combination for the submission
system as it uses the same AM as system D.

Table 12: Results for the submission system: WER (%) per ses-
sion and location together with the overall WER.

Test Set | Session | Kitchen | Dining | Living | Overall
Dev S02 70.3 59.7 53.6 60.8
S09 60.9 64.4 57.6
Eval S01 69.7 50.2 65.8 56.5
S21 59.2 47.1 54.5

The submission system achieved a performance of 60.8%
WER on the dev set and 56.5% WER on the eval set respec-
tively.

9. Conclusion

The Toshiba systems explored various enhancements, front-
ends, AM architectures and speaker adaptation using VTLN
for the final submission system. The system achieved a per-
formance of 60.8% WER on the dev set and 56.5% WER on the
eval set respectively. The system was ranked 4*" in category A,
that focuses on acoustic robustness.
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