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Abstract
In this paper, we present a novel deep fusion architecture for au-
dio classification tasks. The multi-channel model presented is
formed using deep convolution layers where different acoustic
features are passed through each channel. To enable dissemi-
nation of information across the channels, we introduce atten-
tion feature maps that aid in the alignment of frames. The out-
put of each channel is merged using interaction parameters that
non-linearly aggregate the representative features. Finally, we
evaluate the performance of the proposed architecture on three
benchmark datasets :- DCASE-2016 and LITIS Rouen (acous-
tic scene recognition), and CHiME-Home (tagging). Our ex-
perimental results suggest that the architecture presented out-
performs the standard baselines and achieves outstanding per-
formance on the task of acoustic scene recognition and audio
tagging.
Index Terms: acoustic scene recognition, audio tagging, deep
learning, feature fusion.

1. Introduction
While deep architectures have been shown to achieve top per-
formance on simple audio classifications tasks like speech
recognition and music genre detection, their application to com-
plex acoustic problems has a significant room for improve-
ments. Two challenging audio classification tasks that have
been recently introduced are acoustic scene recognition (ASR)
[1] and audio tagging [2]. ASR is defined as the identification
of environments in which an audio is captured, while audio tag-
ging is a multi-label classification task. To solve these chal-
lenge, a majority of current research has shown the effective-
ness of feature fusion with deep architectures such as deep neu-
ral networks (DNN) [1], convolution neural networks (CNN)
[3], and recurrent neural models [4, 5]. A general problem with
multi-channel deep networks is the limited memory and low in-
teraction between subsequent layers. To the problem of limited
memory, an attention mechanism has been introduced. In this
paper, we demonstrate an attention mechanism that can be used
to guide the information flow across multiple channels enabling
a smoother convergence that results in better performance.

A popular approach for acoustic scene recognition (ASR)
and the tagging task is to use the low-level or high-level acoustic
features such as Mel-frequency cepstral coefficients (MFCCs),
Mel-spectrogram, Mel-bank, log Mel-bank features, etc., with
the state-of-the-art deep models [6, 7]. Some of these acoustic
features possess complementary qualities, that is, for two given
features, one is apt in identifying certain specific classes, while
the other is suitable for the rest. This complementarity property
may depend upon the spectrum range in which these features
operate. Hence, it is possible to obtain a boost in performance
when multiple complementary features are combined together
as the overall range over which the learning models can oper-
ate is increased. For an instance, the augmentation of the delta

and acceleration coefficients with MFCC proves to be more ef-
fective for acoustic scene classification [8, 9]. Similarly, Mel
frequency components and the log of Mel components are ex-
amples of one such complementary pair that we use in our work.

In this paper, we combine acoustic features using a multi-
channel approach, where we add subsequent convolution and
pooling layers to the input low-level complementary features.
To effectively amalgamate the properties of several acoustic fea-
tures we introduce three feature fusion techniques: early fu-
sion, late fusion, and hybrid fusion, depending on the position
where acoustic features are fused together (here, position refers
to the intermediate neural layers). The early fusion strategy
comprises of stacked attention layers that introduce a flow of
information between the channels to facilitates better conver-
gence. In the late fusion, we introduce trainable parameters
to the model which enables better generalization for the au-
dio classification and tagging tasks. Finally, we demonstrate
the performance evaluation of the proposed model on DCASE-
2016 (ASR), LITIS-Rouen (ASR) and CHiME-Home (audio
tagging) datasets.

2. Related Work
In this section, we discuss previous work related to audio classi-
fication and audio tagging. These domains have recently gained
popularity because of open challenges such as Dcase2013 [10],
Dcase2016 [11], and Chime2018 [12].

For audio classification and tagging, the Mel frequency
cepstrum coefficient (MFCC) and the Guassian mixture model
(GMM) are widely used as a baseline [13, 14]. Most published
works in this domain uses Mel-spectrograms as features with
deep parallel convolution architectures [3, 6, 15]. Traditional
techniques focus on using hand-crafted audio features as the in-
put to various machine learning classifiers. Some of the recent
research has been focused on passing the term-frequency repre-
sentation of the waveform through convolution neural networks
[16, 15, 6, 5, 3], or deep neural networks [17, 18, 1] How-
ever, deep networks have not yet outperformed feature-based
approaches.

Currently, the main challenges to audio tagging datasets are
the uneven distribution of samples, along with uneven labels
[19]. For audio tagging tasks, attention models have been in-
troduced, which have shown more accurate results than other
hybrid combinations of deep models [20].

3. Complementary Acoustic Features
The Mel and log-Mel are a set of complementary acoustic fea-
tures (CAF). The Mel frequencies capture classes which lie in
the higher frequency domain and log-Mel frequencies capture
classes that lie in the lower frequency domain. We conjecture
that passing the features via a multi-channel model it is possible
to efficiently combine the complementary properties inhibited



Figure 1: The proposed multi-channel deep fusion architecture with complementary acoustic features (CAF) as input.

by these features. We calculate the Mel spectrum by taking the
spectrogram of the raw audio and combining it with the trans-
position of the spectrogram. The Mel frequencies are kept at 40,
resulting in 40-dim Mel features with non-overlapping frames
and 50% hop size.

We also compute the Mel-Frequency components (MFCCs)
and select 13 mel frequency ceptral coefficients (including the
0th order coefficient) with a window size of 1024 frames with
50% overlapping. With the time-varying information, we com-
bine the first and second derivatives (i.e. the delta and accelera-
tion coefficients).

For the Constant Q Transformation (CQT) features, we se-
lect 80 bins per octave with 50% hop size.

4. Multi-Channel Deep Fusion

In the model presented, each complementary acoustic feature is
passed on to a separate CNN, thereby forming a multiple chan-
nel architecture. Each channel is formed using 128 kernels in
the first layer, with a receptive filter of size 3×3. This gives
us the convolved features which are then sub-sampled using a
max/global pooling with filter size 2×2. In the second convolu-
tion layer, we use a large number of kernels (256) for exploring
higher-level representations. The activation function that we use
is the rectified linear units (Relu) in the subsequent convolution
layers. All the parameters are shared across the layers.

Some problems related to long audio recordings are that the
channels can be noisy and the number of foreground events may
not be sufficient. To improve the performance of the underlying
deep architectures, we follow the work of [5, 3] and divide of
the audio features into segments. In place of using the whole
audio feature as the training sample, we decompose the snippet
into T segments having length = 1024 frames with a hop size of
512 frames. This is done to ensure that the underlying learning
model is able to capture the important foreground events in the
long recordings.

4.1. Early fusion

In the multi-channel architecture, each layer of the channel i
captures higher level representation based on the acoustic fea-
ture passed through. These representative features differ from
the corresponding layer of channel j, where j ∈ {N − i}
(shown in Figure 1). The temporal sequences input can be
aligned together with the help of the attention mechanism [21],
so that the properties of the audio sequences important in one
channel can be reflected in the others. We compute an attention
matrix to align two audio representative feature maps, which is
followed by the addition of trainable parameters to transform
the matrix into convolution feature maps (Equation 3 and 4).
This is essentially attentive convolution and helps the model to
assign a higher score important events than the rest (shown in
Figure 2).

Inspired by [21], we introduce a similarity feature matrix
Sij that can influence convolutions across multiple channels,
where Sij is shared across channels i and j. The similarity fea-
tures assign a higher score to those frames in channel ci that are

Figure 2: Computing similarity matrix S4∗3 for two acoustic
features, F i and F j , with frame sizes of 4 and 3 respectively.



relevant to frames in channel cj , where j ∈ {N − i}. The
values in the row of Sij denote the distribution of the similar-
ity weights of the tth frame of ci with respect to cj , and the
columns of Sij represents the distribution of similarity weights
of the T th frame of cj with respect to ci. As shown in Figure
2, the rows of the similarity matrix S4∗3 represent the distri-
bution of audio frames of feature i and columns represent the
distribution of feature j.

Let the representative feature for channel i and j be given
by F r

i and F r
j respectively.The similarity feature matrix Sij is

then computed as

Sx,y
ij = similarityscore(F

r
i [:, x], F

r
j [:, y]) (1)

where similarityscore(a, b) is given by

similarityscore(a, b) =
1

1 + |a− b| (2)

Using the similarity matrix Sij , the attentive feature represen-
tations F s

k∈{i,j} are computed as

F s
i = Wi · ST

ij (3)
F s
j = Wj · Sij (4)

The channel representative features F r
i and the attentive

representative features F s
i are stacked together as an order-3

tensor matrix before passing to further convolution layers.
The idea of attentive convolution works in the early stages

and we call it early fusion technique.

4.2. Late Fusion

Once all the features maps are obtained using the multi-channel
architecture, we use an interaction matrix W to compute the
interaction between them (shown as interaction parameters in
Figure 1). Given the feature maps for channel i and j are F p

i ,
F p
j respectively, the interaction score is computed as

ScoreI(F
p
i , F

p
j ) = (F p

i )
T ·W · F p

j (5)

We share a common weight matrix W across all the possible
pairs. This is done to ensure that all the channels interact with
each other and the computation burden over the network is re-
duced.

4.3. Parameters Sharing

The proposed multi-channel architecture, along with early and
late fusion, increases the number of trainable parameters, which
results in optimization issues. We solve this problem by shar-
ing the parameters across layer i. That is, the convolution layer
shown in Figure 1 is shared across all the channels. We also
share the attention weights Wi and Wj , as computed by Equa-
tion 3 and 4. The interaction matrix W used in the late fusion
is also shared across all the channels. Finally, we combine the
representative features computed at each pooling layer with the
similarity scores (shown in Figure 1 as late fusion). This en-
sures that the model can capture representations at each level of
abstraction.

5. Experiments and Results
5.1. Dataset Description

DCASE-2016. The dataset consists of 1560 samples which
are divided into the development dataset (1170) and evaluation

Table 1: Hyper-parameters used in feature fusion layer for
training.

Hyper-parameter Value
Depth 6

Number of neurons 600
Regularization L2 ; dropout

L2 0.005
Dropout 0.3

Optimizer adam
Loss Binary crossentropy

Learning rate 0.001
Batch size 100

Number of Epochs 10
filter Length (60,3)

Number of filters 256

dataset (390). Each audio class in the development set con-
sists of 78 samples (39 minutes of audio) while the evaluation
dataset is comprised of 26 samples (13 minutes of audio) for
each class. The organizers of DCASE-2016 have provided the
four cross-fold validation meta-data which is used for tuning the
parameters of the network.

LITIS Rouen. This dataset consists of audio recordings
of 30 second duration, which are divided into 19 classes. The
total number of audio samples is 3026. We divide the dataset
into 10 cross-validation sets with 80:20 random splits each. The
final performance of the proposed techniques is computed by
averaging the accuracy on all 10 test sets.

CHiME-Home;. This dataset consists of audio recordings
of 4-second duration in two sampling frequencies: 48Khz in
stereo and 16Khz in mono. We use mono audio data with
the 16Khz sampling frequency, which is further divided into
7 classes. The total number of audio samples is 2792, which
are divided into 1946 development sets and 846 evaluation sets.
Each piece is annotated with a single or multiple labels. [6].

5.2. Hyperparameters

The architecture details of the individual channels are described
in Table 1. The output of the global average pooling layers
is concatenated and then passed on to the intermediate matrix,
which computes the interaction between them. Finally, we use
adam as the optimizer for binary cross-entropy loss.

5.3. Baselines

For DCASE-2016 we use the Gaussian Mixture Model (GMM)
with MFCC (including acceleration and delta coefficients) as
the baseline system. This baseline is provided by DCASE-
2016 organizers. The other baseline used is DNN with mel-
components [1]. For LITIS-Rouen we use the HOG+CQA and
DNN + MFCC results as the baseline. These results are taken
from [7]. For the CHiME-Home dataset, we use the standard
baseline of the MFCC+GMM system [14] and mel+DNN [17].

5.4. Results

The results for the task of ASR on DCASE-2016 and LITIS-
Rouen dataset are shown in Table 2 (a) and (b), respectively.
The use of deep fusion achieves the highest precision and F1
measure when compared to current state-of-the-art techniques
on LITIS Rouen, while we achieve an accuracy of 88.7 on



Table 2: Performance of various architectures on ASR and Audio Tagging. The first half of each table shows the baseline results, the
middle section is the performance of state-of-the-art systems and the bottom section is the performance of the proposed model.

(a) DCASE-2016

Techniques Accuracy %
MFCC + GMM 72.50
Mel + DNN [1] 81.00

MFCC + fusion [8] 89.70
Spectrogram + NMF [22] 87.70

LTE-fusion + CNN [5] 81.20
BiMFCC + I-vector [23] 81.70

Mel + CNN [3] 86.20
BiMFCC + RNN [23] 80.20

BiMFCC + Fusion [23] 88.10
Proposed 88.70

(b) LITIS-Rouen

Techniques P % F1 %
DNN + MFCC 92.20 -

CNN+Fusion [5] 96.30 96.50
RNN+Fusion [7] 97.50 97.70
LTE+Fusion [24] 95.90 96.20

Proposed 98.00 98.25

(c) CHiME-Home

Techniques EER
MFCC + GMM [14] 21.0

Mel + DNN [17] 20.9
CQT + CNN [16] 16.6

MFCC + GMM [9] 17.4
MFCC + DNN [18] 17.85

DAE + DNN [2] 14.8
Mel + IMD [15] 12.3

log-mel + CRNN [6] 11.3±0.6
Proposed 14.0

Table 3: Ablation results of the proposed model. Eight system
configurations for the proposed deep fusion architecture.

Techniques DCASE ROUEN (F1) CHIME
Vanilla 85.50 96.85 15.6

EF 86.1 96.36 15.0
LF 87.00 96.80 14.6

EF+LF 88.70 98.25 14.0

DCASE-2016, which is comparable to current top methods.. A
similar technique of feature fusion, CNN+Fusion, was used by
[5], where they used label-based embeddings. However, our
proposed method of fusing complementary features results in
better performance than all of their architectures.

For the task of audio tagging (Table 2 (c)), the proposed
model achieved an equal error rate (EER) of 14.0, which is bet-
ter than the baselines and all DCASE-2016 challenge submis-
sions. These submissions all omitted the silence class. In con-
trast, we keep the silence class and omit the others class, since
it has high variance due to the introduction of random samples.
We keep the silence class instead. In the task of audio tagging,
the temporal models outperformed the non-temporal techniques
and the reason being the dependence of temporal sequences on
multi-label classification. As shown in Table 2 (b), most of the
successful systems consist of CNN and RNN based models.

Finally, the ablation results are presented in Table 3, which
demonstrates the performance of the deep fusion techniques in-
troduced in our work. Here, Vanilla represents the basic feature
fusion model without attention and interaction matrix. Here, we
present four systems describing the in-depth analysis of the pro-
posed architecture - vanilla (no fusion), early fusion (EF), late
fusion (LF) and hybrid (EF+LF).

5.5. Discussion

The model combining early and late fusion (EF+EL) had the
highest performance amongst all the introduced models. This is
due to the enhanced interactivity across the channels. As shown
in Table 3, the vanilla system is an amalgamation of multiple
features without any fusion and acts as a baseline model. The
early and late fusion models achieve a better performance than
the baseline model. The LF system constitutes the fusion-by-

Figure 3: Training loss curves for the vanilla system along with
the proposed attentive network.

multi-channel architecture, where the interaction parameters are
responsible for non-linear feature augmentation. The similar-
ity features are accompanied by additional trainable parameters,
which result in higher performance but are computationally ex-
pensive to train.

Finally, we present the training curves for the vanilla model
and the proposed architecture (Figure 3 and 4). We keep track
of the mean square error (MSE) for each iteration along with the
binary cross-entropy loss. This is done for the vanilla model and
the proposed attention-based model. The training loss and MSE
for the attention-based systems show a steep decrease in loss as
compared to the vanilla model. Not only are the decreases in
loss quick but the overall losses for attention-based models are
also lower than that of the vanilla system. This demonstrates
that the introduced attention and similarity parameters are re-
sponsible for a smoother convergence.

6. Conclusion
In this paper, we present a multi-channel architecture for the fu-
sion of complementary acoustic features. Our idea is based on
the fact that the introduction of attention parameters between



Figure 4: Training MSE curves for the vanilla system along with
the proposed attentive network.

the channels results in better convergence. The proposed tech-
nique is general and can be applied to any audio classification
task. A possible extension to our work would be to use the pairs
or triplets of audio samples of similar classes and pass them
through the multi-channel architecture. This could help to align
the diverse audio samples of similar classes, making the model
robust to audio samples that are difficult to classify.
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