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Google Speech Group 
Early Days “Mobile”

• Speech group started in earnest in 2005 

• Build up our own technology, first application 
launched in April 2007 

• Simple directory assistance 

• Early view of what a “dialer” could be



Google Speech Group 
Early Days Voicemail

Launched early 2009 as 
part of Google Voice 

Voicemail transcription: 
• navigation 
• search 
• information extraction 



Google Speech Group 
Early Days YouTube

Launched early 2010 
• automatic captioning 
• translation 
• editing, “time sync” 
• navigation 



The Revolution
• Early speech applications had some traction but 

nothing like the engagement we see today 

• The 2007 launch of smartphones (iPhone and 
Android) was a revolution and dramatically 
changed the status of speech processing 

• Our current suite of mobile applications is launched 
in 60+ languages and processes about a century 
of speech each day



Mobile Application Overview

Model

Recognizer

Result Processing

Web Search Text-To-Speech

Context: contacts

Speech: A

Result: W, search, action, speech

argmax P(W | A)
W

HotWord: OK Google



Recognition Models
Language Model

Lexicon

Acoustic Model

Domain/Text Norm: 7:15AM $3.22

Dynamic Lexical Items: Contact Names

Size/Generalization: goredforwomen.org

Acoustic Units/Context/Distribution Estimation

P(W)

P(A | W)

Lexical                                  Acoustic 

Multi-lingual

Finite State Transducers

Deep Neural Networks

Dynamic Language Model Biasing



App Context vs. Technology
Mobile makes use of 

accurate speech 
recognition compelling 

Large volume use 
improves statistical 

models

Xuedong Huang, James Baker and Raj Reddy,"A Historial Perspective of Speech Recognition,"  
Communications of the ACM, January 2014, Vol. 57, No 1.



DNN Technical Revolution
2009

2010

2011

2012

First resurgence 
• Abdel-rahman Mohamed, George Dahl and Geoffrey Hinton "Deep belief 

networks for phone recognition,” In NIPS Workshop on Deep Learning for Speech 
Recognition and Related Applications. 2009 

• Abdel-rahman Mohamed and Geoffrey Hinton "Phone recognition using 
Restricted Boltzmann Machines,”  In the proceeding of ICASSP 2010 

Large Vocabulary 
• Dahl, Mohamed and Jaintly intern at Microsoft, IBM and Google and show LVCSR 

applicability 

First Industry LVCSR Results 
• Microsoft shows gains on the SwitchBoard task. 

• Frank Seide, Gang Li, and Dong Yu, “Conversational Speech Transcription 
Using Context-Dependent Deep Neural Networks,” In the proceedings of 
Interspeech 2011. 

Google uses DNN in its products



DNN vs. GMM
Model
Type

WER 
(%)

Training
Size 

(hours)

GPU Training
Time (hours/

epoch)
Hidden
Layers

Number 
of

States

VoiceSearch
GMM 16.0

5780 321 4x2560 7969
DNN 12.2

YouTube
GMM 52.3

1400 55 4x2560 17552
DNN 46.2

Jeffrey Dean, Greg S. Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Quoc V. Le, 
Mark Z. Mao, Marc’Aurelio Ranzato, Andrew Senior, Paul Tucker, Ke Yang, Andrew Y. 
Ng, “Large Scale Distributed Deep Networks,” in the proceeding of NIPS (2012)

DistBelief CPU training allows speed ups of 70 times over a 
single CPU and 5 times over a GPU. 

Train a 85M parameter system on 2000 hours, 10 epochs in 
about 10 days.



Using a Sequence Model
The DNN can be trained with a sequence objective but it still 
bases it estimation on the current observation alone

P (s | xt)P (s | xt�1) P (s | xt+1)

xt�1 xt xt+1

Output State Output State Output State



Long Short Term Memory

xt

it

mt

rt�1

rt

ft
ot

P (S | xt)

Cell

Re
cu
rre
nt

O
ut
pu
t

LSTM Memory Block

g hct

With a moderate increase in complexity, get much better 
behavior of BPTT training.



Training LSTMs with CE

Cells Projection
Dimensio

Depth
(layers

Parameters
Parameters

WER(%)
750 1 13M 12.4
385 7 13M 11.2
600 2 13M 11.3
440 5 13M 10.8
840 5 37M 10.9

2048 512 1 13M 11.3
800 512 2 13M 10.7
1024 512 3 20M 10.7
2048 512 2 22M 10.8
6000 800 1 36M 11.8

8x2560 hidden layer DNN reaches 11.3% WER 
with CE training, 10.4% with sequence training



Sequence Training LSTMs
• Since the LSTM model has a state to model the 

sequence, it will “learn the language model” if 
trained with a CE criterion. 

• Sequence training will focus its learning on the 
acoustic sequence model.

Model Type DNN LSTM

Objective CE Sequence CE Sequence

WER 11.3 10.4 10.7 9.8



CLDNNs
• Added accuracy improvements from 

combining layers of different types.

tConv

fConv

LSTM

LSTM

LSTM

DNN

output targets

raw waveform
M samples

xt ∈ ℜ
P

CE Sequence
LSTM 14.6 13.7

CLDNN 13.0 13.1

CE Sequence
LSTM 20.3 18.8

CLDNN 19.4 17.4

2000 hour clean training set,  
20 hour clean test set

2000 hour MTR training set,  
20 hour noisy test set



CTC and Low Frame Rate
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Convolution 
N x P weights 

Input 
M samples 

Max pooling 
M+N-1 window 
 

Nonlinearity 
log(ReLU(...)) 
1 X P 

convolution output 
(1 x P) 
 
 

nonlinearity output 
(1 x P) 

tConv

fConv

LSTM

LSTM

LSTM

DNN

output targets

raw waveform
M samples

xt ∈ ℜ
P

Raw Waveform Models



Raw Waveform Performance
Feature Model WER
Log-mel C1L3D1 16.2

Raw C1L3D1 16.2
Log-mel L3D1 16.5

Raw L3D1 16.5
Raw L3D1 rnd 16.5

Log-mel D6 22.3
Raw D6 23.2



Farfield

• A new way for people to interact with the internet 
• More natural interface in the home 
• More social

• User expectations based on phone experience 
• Technically a non-trivial problem: reverb, noise, level 

differences



Data Approach
• New application, no prior data that is 

• Multi-channel 
• Reverberant 
• Noisy 

• Lots of data from phone launched applications 
(maybe noisy/reverberant, but no control) 

• Bootstrap approach to build a room simulator 
(IMAGE method) to generate “room data” from 
“clean data”



Training Data
• 2000 hour set from our anonymized voice search data set 

• Room dimensions sampled from 100 possible configurations 

• T60 reverberation ranging from 400 to 900 ms. (600ms. ave) 

• Simulate an 8-channel uniform linear mic array with 2cm mic 
spacing 

• Vary source/target speaker locations, distances from 1 to 4 meters 

• Noise corruption with “daily life” and YouTube music/noise data 
sets 

• SNR distribution ranging from 0 to 20 dB SNR



Test Data
• Evaluate on a 30k voice search utterance set, about 20 hours 

• One version simulated like the training set 

• Another by re-recording
• In a physical room, playback the test set from a mouth 

simulator 
• Record from an actual mic array 
• Record speech and noise from various (different) angles  
• Post mix to get SNR variations 

• The baseline is MTR trained: early work with the room simulator 
(DNN models) showed  
16.2% clean-clean -> 29.4% clean-noisy -> 19.6% MTR-noisy



Multi-channel ASR
• Common approach separates enhancement and 

recognition 

• Enhancement commonly done in localization, 
beamforming and postfiltering stages 

• Filter-and-sum beamforming takes a steering delay from 
localization for the c-th channel                                       

• Estimation is commonly based on Minimum Variance 
Distortionless Response (MVDR) or Multi-channel Wiener 
Filtering (MWF)

⌧c

y[t] =
C�1X

c=0

N�1X

n=0

hc[n]xc[t� n� ⌧c]



Raw Multi-Channel

• Implicitly model steering delay 
in a bank for P multi-channel 
filters 

• Optimize the filter parameters 
directly on ASR objective akin 
to raw waveform single 
channel model.

fConv

LSTM

LSTM

LSTM

DNN

output targets

x1[t] 2 <M
x2[t] 2 <M

xC [t] 2 <M

pool + 
nonlin

z[t] 2 <1⇥P

y1[t] 2
<M�N+1⇥P

tConv

CLDNN

. . .h1 2 <N⇥P h2 2 <N⇥P hc 2 <N⇥P

y
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Learned Filters

Filters 2ch
(14cm)

4ch 
(4-6-4cm)

8ch
(2cm)

128 21.8 21.3 21.1

256 21.7 20.8 20.6

512 - 20.8 20.6



Removing Phase

Filters 2ch
(14cm)

4ch 
(4-6-4cm)

8ch
(2cm)

128 22.0 21.7 22.0

256 21.8 21.6 21.7

Filters 2ch
(14cm)

4ch 
(4-6-4cm)

8ch
(2cm)

128 21.8 21.3 21.1

256 21.7 20.8 20.6

Train a baseline system with Log-mel features and feed 
these as feature maps into the CLDNN

Log-mel

Raw-waveform



Localization
• The multi-channel raw waveform model does both 

beam forming as well as localization.

Filters 1ch 2ch
(14cm)

4ch 
(4-6-4cm)

8ch
(2cm)

Oracle 
D+S 23.5 22.8 22.5 22.4

Oracle 
TAM 23.5 21.7 21.3 21.3

Raw, 
no 

tdoa
23.5 21.8 21.3 21.1

• Train a Delay-and-Sum   
(D+S) single channel 
signals with the oracle 
Time Delay of Arrival 
(TDOA) 

• Train a Time Aligned Multi-
channel (TAM) system 
where we oracle TDOA 
align the channel inputs.  



WER and Filter Analysis
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Multi-Channel Raw 
Waveform Summary

Model WER-CE WER-Seq

Raw 1ch 23.5 19.3

D+S, 8ch, oracle 22.4 18.8

MVDR, 8ch, 
oracle 22.5 18.7

raw, 2ch 21.8 18.2

raw, 4ch 20.8 17.2

raw, 8ch 20.6 17.2

• Performance improvements 
remain after sequence 
training 

• The raw waveform models 
without any oracle 
information do better than 
an MVDR model that was 
trained with oracle TDOA 
and noise

All systems 128 filters



Factored Multi-Channel Raw 
Waveform

CLDNN

output targets

x2[t] 2 <M

pool + 
nonlin

x1[t] 2 <M

. 

. 

h1
1 2 <N

h2
1 2 <N

. 

. 

h1
2 2 <N

h2
2 2 <N

tConv2

z[t] 2 <1⇥F⇥P

w[t] 2 <M�L+1⇥F⇥P

g 2 <L⇥F⇥1

y[t] 2 <M⇥1⇥P

hP
1 2 <N hP

2 2 <N tConv1

• In a first convolutional layer, 
apply filtering for P look-
directions. 

• Small number of taps to 
encourage learning of spatial 
filtering 

• In a second convolutional layer, 
use a larger number of taps for 
frequency resolution. Tie filter 
parameters between look 
directions  



Learned Filters



Performance of Factored 
Models

• Factored performance improves on unfactored with 
increasing number of spatial filters 

• Fixing the spatial filters to be D+S shows inferior

# Spatial Filters WER

2ch, unfactored 21.8

1 23.6

3 21.6

5 20.7

10 20.8

tConv1 WER

fixed 21.9

trained 20.9

P=5 “look directions”



Multi-Channel Factored Raw 
Waveform Summary

Model WER-CE WER-Seq
unfactored, 2ch 21.8 18.2

factored, 2ch 20.4 17.2
unfactored 4ch 20.8 17.2

factored 4ch 19.6 16.3

• Performance improvements remain after sequence training



Neural network Adaptive 
Beamforming (NAB)

x1(k)[t] x2(k)[t]

DNN LSTM

DNNDNN

LSTM

LSTM

pool +
nonlin

tConv

h1(k)[t] h2(k)[t]

LSTM LSTM

LSTM

DNN

clean features

FP
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G
ated Feedback

output targets

y(k)[t]

Linear Linear

Linear

Linear

Linear

• An alternative to relying on factoring 
is to make the beamforming an 
adaptive process. 

• Use an LSTM with the channel 
inputs as well as a previous 
prediction feedback signal to 
predict the filter-and-sum 
parameters of the incoming signals. 

• Found additional gains from 
applying Multi-Target Learning.



NAB Results

Model WER-CE WER-Seq Params(M) MultAdd(M)

factored 20.4 17.1 18.9 35.1

NAB 20.5 17.2 24.0 28.8



Time-Frequency Duality
• So far, all models have been formulated in the time 

domain 

• Given the computational cost of a convolutional 
operator in time, the frequency dual of elementwise 
multiplication is of interest. 

• Early layers of the network, to be phase sensitive 
use complex weights.



Factored Models in Frequency
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Neural Adaptive 
Beamforming in Frequency

x1(k)[t] x2(k)[t]

DNN LSTM

DNNDNN

LSTM
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pool +
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• The filter prediction LSTM 
computes two 257 length 
complex filter (4 x 257 weights 
>> 25 taps in the time domain) 

• Filters are applied to the complex 
FFT input signals and summed 

• The resulting representation is 
then input to a LDNN with either 
CLP or LPE akin to the factored 
model.



Frequency Model Performance

Model Spatial
M+A

Spectral
M+A

Total
M+A WER Seq

CLP 10.3k 655.4k 19.6M 17.2
LPE 10.3k 165.1k 19.1M 17.2

Model WER CE Parameters Total
M+A

Raw 20.5 24.6M 35.3M
NAB CLP 21.0 24.7M 25.1M

Model Spatial
M+A

Spectral
M+A

Total
M+A

WER Seq

Raw 906.1k 33.8M 53.6M 17.1
CLP 20.5k 1.3M 20.2M 17.1
LPE 20.5k 329k 19.3M 16.9

NAB

Factored

Factored increasing the model to 64ms/1024FFT



Time vs. Frequency Filters
(a) Factored model, time (b) Factored model, frequency



Re-recorded Sets
• Two test sets from re-recording with the mic array “on the 

coffee table” or “on the TV stand” 

• Only use 2-channel models as mic array configuration 
changed (circular vs. linear)

Model Rev I Rev II Rev I
Noisy

Rev II
Noisy Ave

1ch raw 18.6 18.5 27.8 26.7 22.9

2ch raw, unfactored 17.9 17.6 25.9 24.7 21.5

2ch raw, factored 17.1 16.9 24.6 24.2 20.7

2ch CLP, factored 17.4 16.8 25.2 23.5 20.7

2ch raw, NAB 17.8 18.1 27.1 26.1 22.3



Summary
• Google speech technology has really taken off with the “mobile 

revolution” together with the “neural network revolution” 

• Novel applications like Google Home bring up new challenges 
and grounds research 

• Neural network models appear attractive to incorporate 
several previously separate parts of the system: acoustic 
modeling + feature extraction + enhancement ….  

end-to-end modeling is a persistent direction 

• Combining machine learning and “classical structures” 
provides an interesting framework for learning and comparing 
solutions.
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