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Now You're Talking!

Google has developed speech-recognition
technology that actually works. o Q o
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By Farhad Manjoo



Google Speech Group
Early Days "Mobile”

Speech group started in earnest in 2005

Build up our own technology, first application
launched in April 2007 Google goog-411

Simple directory assistance

Early view of what a “dialer” could be



Google Speech Group
carly Days Voicemall

LaunChed early 2009 aS Google voice ™ -
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Google Speech Group
Early Days You lube

Google I/0 2009 Keynote, pt. 2 A

LaunChed early 201 O English (transcribed)

* automatic captioning
* translation

* editing, "time sync”
* navigation 2

Transcribe Audio ==™
Translate Captions =™

First let me start Caption Selection
by welcoming everybody.CR=EIEY 4 [cc
o

00:21/10:07 «f (1) =B
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The Revolution

* Early speech applications had some traction but
nothing like the engagement we see today

 The 2007 launch of smartphones (iPhone and
Android) was a revolution and dramatically
changed the status of speech processing

* Qur current suite of mobile applications is launched
iIn 60+ languages and processes about a century
of speech each day



Mobile Application Overview

Context: contacts

Speech: A

Recognizer

Result: W, search, action, s
- , Result Processing

HotWord: OK Google

Web Search Text-To-Speech




Recognition Models

Multi-lingual

Deep Neural Networks
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App Context vs. Technology

Mobile makes use of Large volume use
accurate speech > improves statistical
recognition compelling models
g z: &\ Technology of 1970s-2010 (GMM-HMLII)’
E ig o—_ Technology since 2010 (DNN)
% 16 \\.
S 14
120 500 1,000 1,500 2,000 2,500

Training Data (hours)

Xuedong Huang, James Baker and Raj Reddy, A Historial Perspective of Speech Recognition,”
Communications of the ACM, January 2014, Vol. 57, No 1.



DNN Technical Revolution

F|rst resurgence 2009 7

Abdel-rahman Mohamed, George Dahl and Geoffrey Hinton "Deep belief
networks for phone recognition,” In NIPS Workshop on Deep Learning for Speech
Recognition and Related Applications. 2009

 Abdel-rahman Mohamed and Geoffrey Hinton "Phone recognition using 201 O _
Restricted Boltzmann Machines,” In the proceeding of ICASSP 2010

Large Vocabulary

 Dahl, Mohamed and Jaintly intern at Microsoft, IBM and Google and show LVCSR
applicability

First Industry LVCSR Results 2011

 Microsoft shows gains on the SwitchBoard task.

 Frank Seide, Gang Li, and Dong Yu, “Conversational Speech Transcription
Using Context-Dependent Deep Neural Networks,” In the proceedings of
Interspeech 2011.

2012 -
Google uses DNN in its products 0 v




DNN vs. GMM

Training GPU Training Number
Size Time (hours/ of
(hours) epoch) States

Model WER
Type (%)

VoiceSearch 5780 4x2560 7969
DNN 12.2
GMM 52.3
YouTube 1400 55 4x2560 17552
DNN 46.2

DistBelief CPU training allows speed ups of 70 times over a
single CPU and 5 times over a GPU.

Train a 85M parameter system on 2000 hours, 10 epochs In

about 10 days.

Jeffrey Dean, Greg S. Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Quoc V. Le,
Mark Z. Mao, Marc’Aurelio Ranzato, Andrew Senior, Paul Tucker, Ke Yang, Andrew Y.
Ng, “Large Scale Distributed Deep Networks,” in the proceeding of NIPS (2012)



INg a Sequence Model

The DNN can be trained with a sequence objective but it still
bases it estimation on the current observation alone
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_ong Short Term Memory

With a moderate increase in complexity, get much better
behavior of BPTT training.




Training LSTMs with CE

8x2560 hidden layer DNN reaches 11.3% WER
with CE training, 10.4% with sequence training

Cells Projection Depth Parameters WER(%)

750 1 13V 12.4
385 / 13V 11.2
600 2 13V 11.3
440 5 13V 10.8
3840 5 37NV 10.9
]
2048 512 1 13V 11.3
3800 512 2 13V 10.7
1024 512 3 20NV 10.7
2048 512 2 22N 10.8
6000 800 1 36V 11.8




Sequence Training LSTMs

« Since the LSTM model has a state to model the
sequence, it will “learn the language model” if
trained with a CE criterion.

* Sequence training will focus its learning on the
acoustic sequence model.

Model Type

Objective Seqguence

Sequence

WER 11.3 10.4 10.7 9.8




CLDNNSs

output targets

4 » Added accuracy improvements from
DNN combining layers of different types.
4 2000 hour clean training set,

LSTM D 20 hour clean test set

? Sequence
LSTM

L:TM D 2000 hour MTR training set,

§ 20 hour noisy test set

Sequence




CTC and Low Frqme Rate
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Raw Wavetorm Models

output targets

A Input Convolution Max pooling Nonlinearity
NN M samples N x P weights M+N-1 window log(ReLU(...))
1XP
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Frequency (kHz)

Raw Waveform Performance

8
/  —— gammatone untrained
—— random init, MTR train
6 — gammatone init, MTR train
gammatone init, clean train
5
4
3
2
1

15

20
Filter index

25
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35

40

Feature
Log-mel
Raw
Log-mel
Raw
Raw

Log-mel

Raw

C1L3D1

WER

C1L3D1 16.2
L3D1 16.5
L3D1 16.5

L3D1 rna 16.5

D6 22.3
D6 23.2




Fartfield

A new way for people to interact with the internet
More natural interface in the home
More social

User expectations based on phone experience

Technically a non-trivial problem: reverb, noise, level
differences



Data Approach

* New application, no prior data that is
* Multi-channel
 Reverberant
* Noisy

e |Lots of data from phone launched applications
(maybe noisy/reverberant, but no control)

* Bootstrap approach to build a room simulator
(IMAGE method) to generate “room data” from
‘clean data”



Training Data

2000 hour set from our anonymized voice search data set
Room dimensions sampled from 100 possible configurations
T60 reverberation ranging from 400 to 900 ms. (600ms. ave)

Simulate an 8-channel uniform linear mic array with 2cm mic
spacing

Vary source/target speaker locations, distances from 1 to 4 meters

Noise corruption with “daily life” and YouTube music/noise data
sets

SNR distribution ranging from 0 to 20 dB SNR



lest Data

Evaluate on a 30k voice search utterance set, about 20 hours
One version simulated like the training set

Another by re-recording

* |n a physical room, playback the test set from a mouth
simulator

 Record from an actual mic array
* Record speech and noise from various (different) angles

* Post mix to get SNR variations

The baseline is MTR trained: early work with the room simulator
(DNN models) showed

16.2% clean-clean -> 29.4% clean-noisy -> 19.6% MTR-noisy



Multl-channel ASR

Common approach separates enhancement and
recognition

Enhancement commonly done in localization,
beamforming and posttiltering stages

Filter-and-sum beamtorming takes a steering delay from
localization for the c-th channel 7¢

C—1N-1

yitl =Y Y henlzcft —n— 7]

c=0 n=0

Estimation is commonly based on Minimum Variance
Distortionless Response (MVDR) or Multi-channel Wiener
Filtering (MWF)



Raw Multi-Channel

output targets
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Frequency (Hz)

| earnedq Filters

Filterbank center frequencies
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Removing Phase

Train a baseline system with Log-mel features and feed
these as feature maps into the CLDNN

LOg'mel 2ch 4ch 8ch
(14cm) (4-6-4cm) (2cm)

Filters

128

256

Raw-waveform Filtare 2¢ch 4ch 8ch
(14cm) (4-6-4cm) (2cm)

128

256




| ocalization

e The multi-channel raw waveform model does both
beam forming as well as localization.

* Train a Delay-and-Sum

(D+S) single channel och seh ach
(14cm) (4-6-4cm) (2cm)

' - Filt ich
gnals with the oracle R

S
Time Delay of Arrival
(TDOA)

Oracle
D+S

23.5 22.8 22.5 22.4

Oracle

TAM 23.5 21.7 21.3 21.3

* Train a Time Aligned Multi-
channel (TAM) system Raw
where we oracle TDOA o
align the channel inputs. tdoa

23.5 21.8 21.3 21.1




WER and Filter Analysis
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Multi-Channel Raw
Waveform Summary

* Performance improvements Model WER-CE WER-Seq
remain after sequence
training

 The raw wavetorm models D+S, 8ch, oracle

without any oracle

information do better than MVg:élae"h’
an MVDR model that was
trained with oracle TDOA

and noise raw, 4ch

Raw 1ch

raw, 2ch

raw, 8ch

All systems 128 filters



Factored Multi-Channel Raw
Wavetorm

output targets

4 * |n a first convolutional layer,
CLDNN | ) apply filtering for P look-
Tzl e RIxFxP directions.
oo
boowf] e M-I e Small number of taps to
g € REXFXL | tconve I encourage learning of spatial
t X 1 X . .
s S R "y‘[']"g‘“""""'tb'o'r;\;_l". fllte”ng
R enN ht e RN |

» |n a second convolutional layer,
. use a larger number of taps for

. frequency resolution. Tie filter
hl e RY hl e RY - parameters between look
A 4 . directions



| earnedq Filters

Beampattern

Impulse responses
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Performance of Factored
Models

* Factored performance improves on unfactored with
increasing number of spatial filters

* Fixing the spatial filters to be D+S shows inferior

# Spatial Filters WER tConv1

2ch, unfactored fixed

trained

P=5 “look directions”




Multi-Channel Factored Raw
Waveform Summary

* Performance improvements remain after sequence training

Model WER-CE WER-Seq
unfactored, 2ch

factored, 2ch

unfactored 4ch

factored 4ch




Neural network Adaptive
Beamformmg (NAB)

o ~. * Analternative to relying on factoring
| o s to make the beamforming an
[ ] [sw] | adaptive process.
Tew| [ew] * UseanLSTM with the channel
s inputs as well as a previous
prediction feedback signal to
Lo | predict the filter-and-sum
parameters of the incoming signals.
- » Found additional gains from
applying Multi-Target Learning.




NAB Resu\ts

Model WER-CE WER-Seq Params(M) MultAdd(M)

factored




Time-Frequency Duality

e So far, all models have been formulated in the time
domain

e (Given the computational cost of a convolutional
operator in time, the frequency dual of elementwise
multiplication is of interest.

* Early layers of the network, to be phase sensitive
use complex weights.



Factored Models in Frequency

Complex Linear

Projection
outpu’} targets N
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Neural Adaptive

Beamforming in Frequency

clean features
| DNN
2
= |
DNN || LSTM
! i
DNN LSTM
______________________ T
LSTM
pool +

* The filter prediction LSTM
computes two 257 length
complex filter (4 x 257 weights
>> 25 taps in the time domain)

* Filters are applied to the complex

FF

iInput signals and summed

* [he resulting representation is
then input to a LDNN with either

CLP or LPE akin to the factored
model.



Frequency Model Performance
NAB

Model WER CE Parameters

Raw
NAB CLP

Factored

Spatial Spectral Total

M+A M+A M+A
19.6M

10.3k 165.1K 19.1M 17.2

Factored increasing the model to 64ms/1024FFT

Spatial Spectral Total
M+A M+A M+A




Time vs. Frequency Fllters

(a) Factored model, time (b) Factored model, frequency
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Re-recorded Sets

e Two test sets from re-recording with the mic array “on the
coffee table” or “on the TV stand”

* Only use 2-channel models as mic array configuration
changed (circular vs. linear)

Rev | Rev i
Noisy Noisy

Model Rev | Rev |l

1ch raw

2ch raw, unfactored

2ch raw, factored

2ch CLP, factored

2ch raw, NAB




summary

Google speech technology has really taken off with the “mobile
revolution” together with the “"neural network revolution”

Novel applications like Google Home bring up new challenges
and grounds research

Neural network models appear attractive to incorporate
several previously separate parts of the system: acoustic
modeling + feature extraction + enhancement ....

end-to-end modeling is a persistent direction

Combining machine learning and “classical structures”
provides an interesting framework for learning and comparing
solutions.
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