The THU-SPMI CHiME-4 system : Lightweight design with advanced
multi-channel processing, feature enhancement, and language modeling

Hongyu Xiang, Bin Wang, Zhijian Ou

Speech Processing and Machine Intelligence (SPMI) Lab, Tsinghua University, Beijing, China

Contact: ozj@tsinghua.edu.cn

Abstract

In this paper, we describe our lightweight system designed for
CHiME-4. For multi-channel processing, we experiment with a
bundle of beamforming methods, including minimum variance
distortionless response (MVDR), parameterized multi-channel
wiener filter (PMWEF), generalized sidelobe canceller (GSC),
spectral mask estimation (ME), and compare these techniques
with the same back-end. Combining MVDR’s distortionless
and reliable estimation of the steering vector by ME is found to
be most effective. We propose to applying histogram equaliza-
tion (HEQ) to compensate for the residual noise in the MVDR
beamformed speech. We apply the recently introduced trans-
dimensional random field (TRF) language model and confirm
its superiority in rescoring. In combination these techniques are
surprisingly effective in the CHiME-4 task, achieving 6.55%
word error rate (WER) for the real evaluation data while keep-
ing low system complexity. Applying multi-channel training
further reduces the WER to 5.81%.

1. Background

The performance of automatic speech recognition (ASR) has
been significantly improved in recent years. However, robust
ASR in everyday environments remains a challenge. Research
efforts can be roughly decomposed into developing more pow-
erful front-ends (e.g. microphone array signal processing, fea-
ture enhancement) and back-ends (e.g. acoustic modeling, lan-
guage modeling).

For front-ends, some widely used beamforming techniques
are minimum variance distortionless response (MVDR) [1], pa-
rameterized multi-channel wiener filter (PMWF) [2], general-
ized sidelobe canceller (GSC) [3], and weighted delay and sum
(WDAS) [4]. Beamforming filters could be designed based on
different criteria, representing different trade-offs between dis-
tortion and noise reduction. For example, MVDR minimizes the
output energy subject to no distortion in the desired direction.
It is known that the effectiveness of beamformers heavily relies
on the estimation of the spatial correlation matrix, the steering
vector or time delays, which are usually difficult to estimate
in practice. Researchers have explored to estimate the spatial
correlation matrix using time-frequency masks, which are ob-
tained either by complex Gaussian mixture models (GMMs) [5]
or advanced neural networks [6]. For back-ends, neural net-
work based acoustic models have become the state-of-the-art in
speech recognition [7]. Neural network based language models
(LMs) have also begun to surpass the classic n-gram LMs [8,9].

The CHiME-4 challenge [10] revisits the CHiME-3 da-
ta [11], i.e., WSJO corpus sentences spoken by talkers situated
in challenging noisy environments recorded via a 6-microphone
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tablet device. The aim is to provide a new benchmark task for
evaluating and promoting far-field speech recognition in every-
day environments.

The CHiME-3 baseline uses MVDR beamformer with di-
agonal loading [12] as the front-end. The back-end is based
on the Kaldi toolkit [13] and consists of a GMM-HMM us-
ing fMLLR transformed features to provide senone state align-
ment and a DNN using fbank features. The DNN is trained
using sequence discriminative training with state-level mimi-
mum Bayes risk (sMBR) criterion. After CHiME-3, an upgrad-
ed Kaldi-based baseline script was made available for CHIME-
4 task, which further incorporates multichannel enhancement
using WDAS based Beamformlt [4], fMLLR features for the
DNN stage, interpolated 5-gram LM and RNN LM for rescor-
ing. The CHiME-4 baseline produces an average WER of
11.57% for the real evaluation data (obtained by our own run).

This paper presents the THU-SPMI system designed for
CHiME-4. For time constraint, we only submit results for 6-
channel track, although the techniques developed in this sub-
mission could be applied to 1-channel track and 2-channel track.

2. Contributions

The goal of this study is to create a lightweight advanced sys-
tem for far-field multi-channel speech recognition, which can
achieve a good trade-off between system complexity and sys-
tem performance, and is practically useful. To this end, we do
not rely on feature fusion (e.g. extracting multiple types of fea-
tures) or hypothesis fusion (e.g. training multiple systems and
doing ROVER), though these are provably beneficial. We are
selective to integrate front-end and back-end techniques and s-
tay simple. Specifically, we identify the following three key
techniques which enable us to significantly improve over the
baseline while keeping low system complexity.

1) For multi-channel processing, after experiments with a
bundle of beamforming methods, the MVDR beamformer with
the steering vector being estimated by time-frequency masks,
as proposed in [5], is found to be most effective. Our contri-
bution is extensive comparisons between various beamformers
with the same back-end.

2) Note that the MVDR beamformer reduces the noise un-
der the distortionless constraint of any signal from the source
direction. There are few artifacts in the beamformed speech,
but there still exists considerable residual noise. We propose to
apply histogram equalization (HEQ) technique for feature nor-
malization, which is originally studied for single-channel fea-
ture enhancement [14]. WERs are found to be significantly re-
duced by using HEQ after the MVDR beamformer, which is an
important empirical finding from this study.

3) Recently, we have shown in previous work [15, 16] with
open source code [17] that a new trans-dimensional random



Table 1: Average WER (%) for the CHiME-4 baseline system
obtained by our own run.

Dev Test
real simu real simu
GMM 1290 | 14.35 | 21.55 | 21.09
6¢ch DNN sMBR | 8.12 9.37 14.84 | 14.38
KN5+RNN 5.89 6.97 11.57 | 10.66

Track System

field (TRF) LM achieves superior performance. In the CHiME-
4 task, we confirm that interpolated TRF and LSTM performs
better than using LSTM alone, and produces significantly better
rescoring performance than interploted 5-gram-KN and RNN
provided in the CHiME-4 baseline. This represents an advance
of the state-of-the-art of language model rescoring.

3. Experimental evaluation
3.1. System overview

Basically, the proposed system follows the pipeline of the
CHiME-4 baseline, and is strengthened with the three tech-
niques which are highlighted before and will be introduced and
evaluated in the following. Table 1 shows the WER result-
s for the baseline, which are obtained by our own run. Start-
ing from the baseline, we incrementally investigate the relative
contribution of each technique from front-end to back-end, and
show that in combination they are surprisingly effective for the
CHiME-4 task, ultimately achieving 6.55% WER for the real e-
valuation data. Applying multi-channel training further reduces
the WER to 5.81%, which was conducted after the CHIME-4
submission.

3.2. Beamforming

We experiment with a bundle of beamforming methods, which
will be briefly introduced below. The experimental results are
shown in Table 2, with the same back-end.

3.2.1. Signal model

In the time domain, most beamforming methods assume the fol-
lowing signal model:

xi(t) = s(t) * hi(t) + ni(t) 9]

where x;(t) is the ¢-th microphone signal, s(t) is the source
signal, h;(t) is the impulse response from the source to the i-th
microphone, and n;(t) is the additive noise.

In frequency domain, we have

X(t,w) = S(t,w)d(w) + N(t,w) = G(t,w) + N(t,w) (2)

where S(t,w), X(t,w), N(¢,w) are the STFT coefficients of
the desired source signal, the microphone signal vector and the
noise signal vector respectively. d denotes the steering vector.
For convenience, we omit ¢ and w in the following description.

3.2.2. Weighted delay and sum (WDAS)

WDAS simply aligns different channels in time and sums them
together as follows:

y(t) =Y wii(t - ) 3)

where 7; is the time delay from the source to the ¢-th mico-
phone, w; is the weight. The CHiME-4 baseline Beamfor-
mlt [4] is based on WDAS, where time delays are estimated

by use of generalized cross correlation with phase transform
(GCC-PHAT) [18] and two-step Viterbi postprocessing.
3.2.3. Minimum variance distortionless response (MVDR)

MVDR is designed to minimize the output energy subject to no
distortion in the desired direction:

Ir\l]\i]nE||WHXH2 stWHd =1 @
which has the well-known closed-form solution
& Ld
= (5)
die.d

where & is the noise correlation matrix, H denotes conju-
gate transposition.

The performance of MVDR relies heavily on the estimation
of the noise correlation matrix ®nwn and the steering vector d.
The steering vector could be estimated by time delays 7;, d =
[e9“™ 79«72 ] as did in the CHIME-3 baseline. A recent
method studied in [5], denoted as MVDR-EV, is to obtain the
steering vector from the principal eigenvector of the estimated
spatial corelation matrix of clean signal e = Pxx —PnN,
and use complex GMM based spectral mask estimation (ME)
method to esimate PN .

Allowing the desired direction gain to be the reference com-
ponent of d, we obtain MVDR with relative transfer function
(MVDR-RTF) [2]. Assuming the first channel to be the refer-
ence channel, MVDR-RTF can be expressed as

r%\i]nE||WHX|\2 stWHd = d; ©)
where d; is the first component of d. The solution is
N
= DNNCEC Ly, @)
tT(‘I’NN‘I’Gg)

where u; is vector [1,0,0, ..., 0].

3.2.4. Generalized sidelobe canceller (GSC)

Generalized sidelobe canceller is composed of three parts: a
fixed beamformer, a block matrix and a noise canceller. The
fixed beamfomer and the block matrix are normally fixed filters.
Using b and z to represent the output of the fixed beamformer
and block matrix respectively, GSC aims at finding the filter
minimizing the output of the noise canceller,

min ||b — R%z|” 8)
R

where R is the noise canceller filter and is normally implement-
ed by an adaptive filter.

3.2.5. Parameterized multi-channel Wiener filter (PMWF)

PMWEF explicitly expresses the trade-off between noise reduc-
tion and distortion. The PMWEF filter is defined by

min B(|[WHX — Gi||* + 8| WHN][) ©)

where (1 is the first element of G, assuming the first micro-
phone to be the reference microphone, and f is the parameter.
The first term E(||W™X — G1||? represents distortion and the
second term E||[WHN] \2 represents noise reduction. The so-
lution is

W = (®xx + B®NN) ' Pacm (10



Table 2: Average WER (%) of different beamformers with the
CHiME-4 baseline back-end but without RNN.

Track System Dev : Test .
real simu real simu
WDAS 8.19 9.40 15.59 | 15.61
MVDR 1431 | 597 | 25.89 | 6.99
GSC 10.99 | 15.77 | 19.79 | 24.17
GSC+WDAS 946 | 11.73 | 16.61 | 19.00
6¢ch PMWEF 10.82 | 9.90 | 19.58 | 14.18
ME-+direct 8.75 6.98 1505 | 7.74
ME+PMWF 8.87 6.51 1552 | 7.33
ME+MVDR-EV 8.04 6.07 13.59 | 7.32
ME+MVDR-RTF | 11.07 | 6.90 1899 | 8.53

3.2.6. Results and Discussions

In Table 2, WDAS denotes the BeamformlIt in the CHiME-4
baseline [4]; MVDR denotes the one released at CHIME-3 [11];
GSC is a standard one with a fixed beamformer and a simple
fixed block matrix. GSC+WDAS means using WDAS to rel-
pace the beamformer block of GSC. When applying MVDR,
MVDR-RTF and PMWEFE, noise correlation matrix is estimated
using a limited context immediately before the utterance as in
the CHiME-3 baseline. After complex GMM based mask esti-
mation (ME), we apply the estimated masks directly to separate
the source ("ME+direct”) or to estimate the spatial correlation
matrices which are fed to different beamformers (the last three
rows in Table 2). We use all 6 channels with energy based mi-
crophone failure detection, except in the case of running WDAS
where we do not use channel 2.

Several points can be drawn from Table 2. (1) CHiME-3
baseline MVDR performs best on the simulated data but worst
on the real data. Presumably this is because that the steering
vector estimation in the CHiME-3 baseline MVDR is similiar
to the generation of the simulated data and is not matched to the
real data. The CHiME-4 baseline WDAS (Beamformlt) per-
forms well. (2) Different beamforming methods pursue trade-
off between reducing noise and avoiding source distortion from
different perspectives. MVDR-RTF and PMWF contain distor-
tion even if with perfect estimation of spatial correlation matrix.
The MVDR-EV beamformer is attractive since it explicitly en-
forces distortionless in the desired source direction. (3) The
MVDR-EV beamformer relies on the estimation of the spatial
correlation matrices of clean and noise signals, which in turn are
used to estimate the steering vector d and the beamformer co-
efficients W. Complex GMM based spectral mask estimation
is found to be superior for this purpose. (4) Replacing the fixed
beamformer for GSC is not able to improve the performance of
GSC. The block matrix and noise canceller may play a more
important role than the fixed beamformer for GSC.

In summary, among those beamforming techniques show in
Table 2, ME works well for its ability to reduce noise; WDAS
(BeamformlIt) performs well for its robustness; ME+MVDR-
EV is found to be most effective, which combines MVDR’s dis-
tortionless and reliable estimate of the steering vector by ME.
Noise reduction, distortionless and robustness should be con-
sidered together when designing a beamformer.

The Table 2 results are obtained by training back-end G-
MMs and DNNs over the enhanced speech. Results in all later
Tables (starting from Table 3) are obtained by 1) using cross-
correlation based mic failure detection, 2) training back-end
acoustic models over only channel 5 but testing over the en-
hanced speech from ME+MVDR-EV.

Table 3: Average WER (%) for the ME+MVDR-EV enhanced
speech with the CHiME-4 baseline back-end.

Dev Test
real simu real simu
GMM 10.89 | 1045 | 16.42 | 12.10
6¢ch DNN sMBR | 7.20 644 | 11.10 | 8.02
KN5+RNN 5.16 4.70 8.21 5.79

Track System

ME+MVDR-EV
Beamformer Baseline
with mic 13'0_‘:‘:?:“(: feature HEQ features

failure
detection

processing

Figure 1: HEQ feature enhancement flow chart in testing.

3.3. Microphone failure detection

For the 6-ch speech recognition, there exists microphone fail-
ure, which hurts the recognition performance. Energy based
microphone failure detection does not work well, so we propose
to use segmental cross-correlation to detect microphone failure.

Microphone failure is mainly caused by microphones not
working or touched by the speaker, thus there may have small or
large energies. Considering that cross-correlation is influenced
by speech magnitudes, we first normalize the 6-ch signals to
have equal energies for each channel. Then we calculate the
summed segmental maximum cross-correlation:

corr[i, m] = E max corr[t, j, m, n] (11)
n
J,JjF#i

where corr[i, j, m, n] denotes the cross-correlation between the
m-th segment from ch-¢ and the m-th segment from ch-j with
n-point shift. The corr[i, m] is further scaled by the median as

follows:

corr[i, m] (12)

scorri, m] = median corr[i, m]
1

When scorr[i, m] is smaller than the threshold a, the ch-i’s m-

th segment is considered as a failure segment. If one channel

contains more than /3 failure segments, this channel is thrown

away. In our experiments, a segment is of 128ms duration, « is

set to be 0.6 and [ is set to be 2.

3.4. Histogram equalization (HEQ)

The baseline acoustic features are 13-order MFCCs. HEQ is
to warp each component of the cepstral vector over a specified
time interval to match the standard Gaussian. While HEQ is
applied in sentence level in [14], HEQ over sliding 3-second
windows performs better in our experiments. After HEQ, other
feature transformations are applied as in the CHiME-4 baseline.
In training, HEQ is applied to the MFCCs of channel 5'. In
testing, HEQ is applied to the enhanced speech, as shown in the
flow chart in Figure 1.

It is worthwhile to compare the well-known CMVN and the
HEQ. While both are for feature normalization, HEQ is poten-
tially more effective to compensate for additive noise due to the
nonlinear nature of the distortion caused by additive noise in the
cepstral domain. Comparing Table 3 and 4, it is clear to see the
benefit of applying HEQ to compensate for the residual noise in
the MVDR beamformed speech, espeically for the real data.

'In multi-channel training, HEQ is applied to all six channels.



Table 4: Average WER (%) for the stack-HEQ features with the
CHiME-4 baseline back-end.

Track System

Dev Test
real simu real simu
GMM 10.39 | 10.37 | 13.53 | 12.01
6¢ch DNN sMBR | 6.73 6.12 9.95 8.19
KN5+RNN 4.64 4.22 7.15 5.51

feature value

frame

feature value

frame
(b) HEQ (tr0S real noisy)

Figure 2: Effect of HEQ over the second component of MFCC
feature vectors.

For illustration purpose, Figure 2 plots the second compo-
nent of the MFCC feature vectors and the corresponding HEQ
features for utterance 011_011C0201_PED in real training set.
Three channels (ch 1, ch 5 and ch 6) are plot separately.

HEQ reduces variations in noisy signals but may lose de-
tails. We stack two types of fMLLR features with and without
HEQ as the input of the DNN for information fusion (called
stack-HEQ).

3.5. Trans-dimensional random field (TRF) LM

In addition to the 5-gram LM and RNN LM provided in the
baseline, a TRF LM is trained on the official training corpus
with 200 word classes and the features ”w+c+ws+cs+wsh+csh”
[15]. “w”/“c” denotes the word/class n-gram up to order 4 and
“ws”/“cs” denotes the word/class skipping n-gram up to order
4. “wsh”/“csh” denotes the higher-order long-skipping features.
The definition of feature types is shown in Table 1 of [15].

Here is a brief introduction to TRF LMs. Denote by 2! =
(z1,...,1) a sentence (i.e., word sequence) of length [ rang-
ing from 1 to m. Each element of z' corresponds to a single
word. D denotes the whole training corpus and D; denotes the
collection of length [ in the training corpus. n; denotes the size
of Dyandn =" n.

As defined in [15], a trans-dimensional random field model
represents the joint probability of the pair (I, acl) as

Ly _ /M ATt 1
p(l7$7>‘)_Zl()\)e ’ (3)

where n;/n is the empirical probability of length I. f(z!) =
(fr(zh), ... fa(z")7 is the feature vector, which is usually de-
fined to be position-independent and length-independent, e.g.
the n-grams. d is the dimension of the feature vector f(x).
X is the corresponding parameter vector of f(z!). Z;(\) =

le 7@ is the normalization constant of length [. By

50 100 150 200

Table 5: Average WER (%) for different language models.

Track System Dev - Test -
real | simu | real | simu
KNS5 557 | 5.11 | 825 | 642
RNN 524 | 482 | 792 | 591
6¢ch TRF 5.09 | 456 | 792 | 6.04

LSTM 535 | 420 | 7.08 | 5.28
KN54+RNN | 4.64 | 422 | 7.15 | 5.51
KN5+LSTM | 4.68 | 3.74 | 6.79 | 5.15
TRF+RNN | 4.48 | 4.06 | 6.96 | 5.26
TRF+LSTM | 4.58 | 3.78 | 6.55 | 4.95

Table 6: WER (%) comparison w/o multi-channel training (en-
hanced speech with HEQ and TRF+LSTM back-end).

Track System Dev Test

real | simu | real | simu

trained ononlych5 | 458 | 3.78 | 6.55 | 4.95

bch multi-channel 432 | 347 | 581 | 441

making explicit the role of length in model definition, it is clear
that the model is a mixture of random fields on sentences of
different lengths (namely on subspaces of different dimension-
s), and hence will be called a trans-dimensional random field
(TRF).

In the joint SA training algorithm [15], another form of
mixture distribution is defined as follows:

L. __m/n ATy
p(l,l‘ 7>\7<) - Z1()\)e<l € (14)

where { = {(1,...,(m} with (¢ = 0 and (; is the hypoth-
esized value of the log ratio of Z;(\) with respect to Z1(\),
namely log 2 ((’)\\)) Z1(X) is chosen as the reference value and
can be calculated exactly. An important observation is that if
and only if { were equal to the true log ratios, then the marginal
probability of length [ under distribution equals to n;/n. This
property is then used to construct the augmented SA algorithm,
which jointly estimates the model parameters A and normaliza-
tion constants (.

TRF LMs have the potential to integrate a richer set of fea-
tures, and as shown in [15], outperform the traditional 4-gram
LM significantly with the relative WER reduction 9.1%. More-
over TRF LMs also achieve slightly better WER results than
RNN LMs, but with much faster speed in computing sentence
probabilities.

In this experiment, the RNN LM is trained using the
CHiME-4 baseline script with 300 hidden units. The LSTM
LM is trained using the open source toolkit provided by [19]
with 2 hidden layers and 500 hidden units of each layer. 10 e-
poch iterations are performed before early stop and no dropout
is used. Following the challenge instructions, we tune the LM
weight and interpolation weight over the whole development
set including all noisy environments and data types. The exper-
iment scripts can be found in [17]. As shown in Table 5, TRF
alone performs as good as RNN; TRF+RNN further reduces the
WER from KN5+RNN; TRF+LSTM performs even better.

3.6. Multi-channel training

After the CHiME-4 submission, we perform multi-channel
training as a straightforward way to expose the acoustic model
to larger training data, as did in [20], and obtain further signifi-
cant improvement, as shown in Table 6.
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Figure 3: WERs on the real evaluation data, showing the rela-
tive contribution of each technique.
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Table 7: Average WER (%) for the CHiME-4 baseline front-end
(Beamformlt) with our submitted back-end (stack-HEQ).

Track System Dev - Test -
real simu real simu
GMM 12.56 | 14.37 | 18.82 | 19.84
6ch DNN sMBR | 7.75 8.74 | 13.84 | 13.57
KN5+RNN 5.46 6.29 | 10.35 | 9.97
TRF+LSTM | 5.23 5.66 9.36 9.16

Table 8: WER (%) per environment for the submitted system
w/o TRF LM.

Track Envir. Dev - Test .
real | simu real simu
BUS | 580 | 4.13 | 10.36 | 4.09
6¢ch without TRF CAF | 3.78 | 490 | 6.13 5.12

(KN5+RNN) PED | 3.85 | 3.63 | 508 | 5.60
STR | 5.12 | 422 | 7.04 | 7.23

BUS | 5.68 | 456 | 9.67 | 4.74
6ch with TRF CAF | 398 | 406 | 5.60 | 422
(TRF+LSTM) PED | 3.78 | 3.14 | 4.17 | 4.65
STR | 490 | 3.36 | 6.76 | 6.18

4. Summary

In this paper, we build a lightweight advanced system for
CHiME-4 far-field multi-channel speech recognition challenge,
with three key techniques. After experiments with a bundle of
beamforming methods, the MVDR beamformer with the steer-
ing vector being estimated by time-frequency masks is found
to be most effective. HEQ is successfully applied to compen-
sate for the residual noise in the MVDR beamformed speech.
Interpolated TRF+LSTM LM:s perform significantly better than
the baseline KN5+RNN LMs and are also superior to the state-
of-the-art interpolated KN5+LSTM LMs in language model
rescoring. In combination these techniques are surprisingly ef-
fective, achieving 6.55% WER for the real evaluation data while
keeping low system complexity. Applying multi-channel train-
ing further reduces the WER to 5.81%.

Figure 3 shows how the system performance is incremen-
tally improved over the CHiME-4 baseline with the introduced
techniques from front-end to back-end. Following the chal-
lenge instructions, Table 7 shows the results of the CHiME-4
baseline front-end (BeamformlIt) with our submitted back-end
(stack-HEQ, TRF LM, without multi-channel training); Table 8
shows the WER per environment for our submitted system.
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