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Abstract

The MLLP CHiME-4 system is presented in this paper. It
has been built using the transLectures-UPV toolkit (TLK) de-
veloped by the MLLP research group which makes use of state-
of-the-art automatic speech recognition techniques. Our best
system built for the CHiME-4 challenge consists on the com-
bination of two different sub-systems in order to deal with the
variety of acoustic conditions. Each sub-system in turn, follows
a hybrid approach with different acoustic models, such as Deep
Neural Networks or BLSTM Networks.

1. Introduction

The CHiME Speech Separation and Recognition Challenge [1]
encourage participants to develop innovative ASR approaches
capable of dealing with challenging noisy environments that
rely in speech processing, signal separation or machine learn-
ing. It is based on the Wall Street Journal corpus sentences,
spoken by talkers located in real noisy environments, such as
in a street junction, on the bus, or in a pedestrian area. All the
audios have been recorded using a common 6-channel tablet
microphone array.

In previous years, the challenge consisted of obtaining the
best possible transcription from the 6 channels simultaneously,
but given the successful results achieved, this year the challenge
proposes two more tracks: 1-channel and 2-channels tracks.
Each track only differs in the number of available channels for
testing. Thus, the 6-channels track is the easiest since more fa-
vorable audio enhancement techniques can be applied. In the
case of the 1-channel and 2-channels tracks, the audio enhance-
ment techniques cannot exploit channel information at all which
makes this tasks harder to deal with.

The MLLP CHiME-4 system has been developed focus-
ing on the acoustic modeling aspect. Specifically, two differ-
ent acoustic models have been trained following the hybrid ap-
proach. On the one hand, a Context-Dependent Deep Neural
Network Hidden Markov Model (CD-DNN-HMM) and on the
other hand, a Bidirectional Long Short Term Memory Neural
Network (BLSTM). Both acoustic models will be trained on
the same data and their output combined. From the proposed
three tracks, this global back-end system have been tested in
the 1-channel and 2-channel tracks.

The rest of this work is divided as follows. Section 2 de-
scribes the ASR toolkit used for the experiments. In Section 3
the proposed system is described and the conclusions are given
in section 5.

2. The TransLectures-UPV Toolkit
The MLLP CHiME-4 system has been developed using the
transLectures-UPV Toolkit (TLK) [2]. TLK comprises a set of
tools for audio processing, feature extraction, HMM and DNN
training and decoding. The main latest features added to the
toolkit are the following:

• Multilingual and Convolutional NNs.

• Different DNN speaker adaptation techniques: output-
feature discriminant linear regression (oDLR) [3] or
Kullback-Leibler Divergence based [4].

• DNN sequence discriminative training based on Maxi-
mum Mutual Information (MMI).

• Online decoding.

• Gammatone feature extraction.

TLK has demonstrated to provide competitive results in
challenging and well-known tasks. In [5] the TLK-based sys-
tem dealt with TED video lectures, and in [6] the TLK system
provided good results in the LibriSpeech [7] corpus.

3. Proposed System
The system proposed by the MLLP group is based on the TLK
toolkit. It is composed of two transcription sub-systems that are
combined following a recognizer output voting error reduction
(ROVER). Each of those sub-systems are based on the HMM-
NN hybrid approach. The only difference is that for the first
sub-system a classical DNN is used whereas for the second sub-
system a BLSTM NN is employed.

Each of those sub-systems perform a three step recognition
process as can be observed in Fig. 1. The first and second steps
are shown in the upper box. Regarding the first step, it is shared
between both sub-systems, cepstral mean and variance normal-
ization (CMVN) is applied and the decoding is performed using
a standard DNN which provides the best possible transcription
and a better feature-space Maximum Likelihood Linear Regres-
sion (fMLLR) transform. For the second step, each sub-system
makes use of their own acoustic model (DNN or BLSTM) tak-
ing as input the transformed fMLLR features. The output of
this system is used to perform a final third-pass recognition
(the lower box of Fig. 1). During this step, an unsupervised
speaker adaptation technique is applied to both, the DNN and
the BLSTM. Specifically, the technique used in this work con-
sisted of a conservative training approach using a very small
learning rate and early stopping [4]. This means that a very
small learning rate is estimated for a fixed number of epochs as
to minimize the Word Error Rate (WER) and then this learning
rate is used in evaluation. To the best of our knowledge, it is the



first time that this kind of technique is applied to BLSTM NNs
for acoustic modeling.

TLK allows to perform decoding efficiently with large vo-
cabulary language models applying pruning techniques: beam
search, histogram pruning, word end pruning and look-ahead.
Thus, the provided 5-gram language model has been used to
obtain the recognition outputs along all the steps. Once the last
step is performed, the output lattices are re-scored using also
the provided RNN-based language model.

BLSTM NNs have been built using TensorFlow [8]. With
this purpose, a new feature has been added to TLK for decoding
using TensorFlow-based graphs.

4. Experimental evaluation
The data used for training the acoustic models belong to the
multi-condition training set defined by the CHiME-4 challenge.
In our case, all data from channels 1,3,4,5 and 6 have been used
to train the DNN and the BLSTM sub-systems.

Regarding feature extraction, classical Mel-frequency cep-
stral coefficients (MFCC) were extracted with a Hamming win-
dow of 25 ms. shifted at 10 ms. intervals. This MFCC fea-
tures consisted of 16 MFCCs and their first and second deriva-
tives (48-dimensional feature vectors). The resulting feature
vectors were then normalized by mean and variance at speaker
level. And after that, a single fMLLR transform for each train-
ing speaker was then estimated and applied to perform speaker-
adaptive training (SAT).

In order to train the DNN and BLSTM based acoustic mod-
els, we first trained a basic context dependent triphone HMM
model up to 64 component Gaussian mixtures, after which a
second-pass fMLLR was applied. This model yielded a total of
9079 tied states, estimated following a phonetic decision tree
approach.Both models were built on top of these HMM acous-
tic model. On one hand, the DNN-based acoustic model took as
input the fMLLR features with a window size of 11, 5 hidden
layers, sigmoid activation functions and an output layer of 9079.
It was applied a discriminative pre-training stage and after that,
the network was trained as to obtain the best frame accuracy
on a validation set. On the other hand, the BLSTM acoustic
model was trained with fMLLR input features (without win-
dowing) with 4 hidden layers of 500 units each (both forward
and backward directions) and an output layer of 9079. In this
case, dropout was applied at the output of each cell with a prob-
ability of 0.1, and the Newbob strategy was also applied in order
to reduce the learning rate by 0.8 each time the frame accuracy
improved less than 3% relative on the validation set. Both net-
works were trained by minimizing the cross-entropy loss func-
tion, following the classical stochastic gradient descent algo-
rithm. This two acoustic models were used for the 1-channel
and 2-channels tracks. It is worth mentioning, that in the case
of the 2-channel track, the audio enhancement beamformit was
applied.

In Table 1 the results after each recognition step from the
1 channel track are shown, and similarly in Table 2 the results
from the 2-channels track. As can be observed, the first recog-
nition step is common to both sub-systems and tracks. With
respect to the rest of recognition passes, very similar behav-
iors are observed in both tracks; the DNN performs better in all
recognition steps and the BLSTM obtains a huge gain after the
third step. For the first statement, we argue that the DNN is far
more complex in terms of number of parameters, as we have
trained a 5 hidden layer neural network of 2048 units per layer,
while the BLSTM consist of 4 hidden layers of 500 units each
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Figure 1: Multi-Pass recognition system with DNN adaptation.
Top: 2-pass decoding using fMLLR features. Bottom: Third
pass DNN adaptation.



Table 1: WER (%) per step for the 1-channel track.

System Rec. Pass Dev Test
real simu real simu

DNN

1 16.03 17.63 24.87 24.47
2 12.66 14.52 19.80 19.92
3 11.93 13.19 18.34 17.73

+RNNLM 10.45 11.98 17.20 16.56

BLSTM

1 16.03 17.63 24.87 24.47
2 15.10 17.18 23.09 23.56
3 13.40 14.46 19.30 18.47

+RNNLM 11.96 12.79 17.78 17.03

Table 2: WER (%) per step for the 2-channels track.

System Rec. Pass Dev Test
real simu real simu

DNN

1 13.83 14.35 21.14 20.80
2 10.39 11.49 16.26 15.75
3 9.60 10.46 14.77 13.71

+RNNLM 8.45 9.29 13.71 12.57

BLSTM

1 13.83 14.35 21.14 20.80
2 12.81 14.22 19.09 19.64
3 11.63 12.67 15.50 14.93

+RNNLM 10.12 11.36 14.31 13.46

one. Regarding the second statement, the huge WER improve-
ment from the BLSTM at the third step comes from the fact that
we are using the best transcription obtained during the previous
step, i. e. the DNN, as to better perform speaker adaptation to
the NN during the third step.

Once the output from both systems has been obtained,
ROVER technique is applied as to combine both transcriptions.
As can be seen in Table 3, the DNN system systematically out-
performs the BLSTM-based. However, the combination of both
systems yields the best result in both tracks. If we take a look
to the real test set, the baseline provided by the organizers for
the 1-channel track yielded 23.70% WER points whereas our
system obtains 16.11%. This represents 32% relative reduc-
tion in WER for the 1-channel track. In the case of the 2-
channels track, the baseline system achieved 16.58% average
WER whereas our system achieves 12.82%. This represents a
22.7% relative reduction in WER for the 2-channel track. These
improvements seems quite competitive, taking into account the
simplicity of our system.

Table 4 summarizes the results obtained by the best sys-
tem per environment. As shown, the most challenging has been
the bus environment in all tracks for the real test set. In fact,
the baseline system achieved 35.8%, while our system 21.61,
which means almost 40% of relative improvement in the 1-
channel track. In the case of the 2-channels track, the improve-
ment is about 37% (from 25.37 to 16.00).

5. Conclusions
In this work we have described the MLLP ASR system devel-
oped for the CHiME-4 challenge built using TLK. The system
is based on the combination of two sub-systems which make
use of different acoustic models: DNNs and BLSTMs. The fi-
nal system obtains 32% and 22.7% relative improvements over
the 1-channel and 2-channels tracks compared to the baseline.
This represents a good enough result taking into account the
simplicity of our approach.

Table 3: Average WER (%) for the tested systems.

Track System Dev Test
real simu real simu

1ch
DNN 10.45 11.98 17.20 16.56

BLSTM 11.96 12.79 17.78 17.03
Combined 9.95 11.13 16.11 15.72

2ch
DNN 8.45 9.29 13.71 12.57

BLSTM 10.12 11.36 14.31 13.46
Combined 7.96 8.93 12.82 12.06

Table 4: WER (%) per environment for the best system.

Track Envir. Dev Test
real simu real simu

1ch

BUS 11.74 9.04 21.61 10.95
CAF 11.18 14.68 18.12 19.57
PED 7.42 9.35 13.25 15.37
STR 9.45 11.46 11.47 16.98

2ch

BUS 8.84 7.73 16.00 8.67
CAF 8.70 11.55 13.78 14.34
PED 6.27 7.45 11.17 11.77
STR 8.02 9.00 10.31 13.47
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