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ABSTRACT

This paper reports developments and evaluation results of
I2R system for CHiME-4 challenge which addresses distant
speech recognition on tablet device in challenging noisy en-
vironments. It features three tracks of 6-channel; 2-channel;
and 1-channel data, respectively. Our developments are more
focused on the algorithms with potentials in real-time imple-
mentation. In front-end processing, time-domain weighted
delay-and-sum beamforming (WDAS) was implemented with
following specific processing compared to the provided base-
line processing [1]: (1) channel SNR and coherence mea-
surements were used to calculate the beamforming weighted
coefficients; (2) slow updating of the beamforming weights
with 2-second windows; (3) a modified single channel speech
enhancement was applied on top of output beamforming en-
abling further reduction of the background noise while keep
controlling the introduced distortion. In the back-end pro-
cessing, two new components were applied compared to the
provided baseline: (1) LSTM language model for re-scoring;
and (2) Semi-supervised DNN adaptation for each individual
speaker in test. In evaluations, we stay with unique acous-
tic models for all the task and apply the processing on test
data only. Consistent improvements were obtained across all
three tasks. The submitted results for the real test set were
5.00%, 8.32%, and 11.19% for the 6-channel, 2-channel, and
1-channel tasks, respectively.

1. BACKGROUND

The industrial applications of speech recognition has been
moving from closed talk microphones to daily real life scenar-
ios thanks to booming developments in robotic and artificial
intelligence (AI) areas. The task, however, is remained chal-
lenging due to the problems of attenuation, noise, distortion,
and reverberation. Following the success of the CHiME-3
challenge which attracted many international teams to partic-
ipate, CHiME-4 revisits the CHiME-3 data, i.e., utterances
recorded via a 6-microphone tablet device in challenging
noisy environments. The difficulty is increased by reducing
the number of microphones. CHiME-4 features three tracks
depending on the number of microphones available for test-
ing: 6-channel track; 2-channel track; and 1-channel track.
Excepting the 6-channel task, the channels are randomly cho-
sen from the pool so that no specific geometrical prior in-

formation is given to the samples. The audio was recorded
under real acoustic mixing conditions, i.e. talkers speaking in
challenging noisy environments, including four varied noise
settings: caf, street junction, public transport and pedestrian
area. We participated in both three tasks and our focus is
the approaches which are suitable for real-time implementa-
tions. In the front-end, the weighted delay-and-sum beam-
forming (WDAS) was implemented with a specific way to
determine the weighted coefficients, using both coherence [1]
and SNR estimations [2]. A post-processing filter is applied
on top of WDAS output and that was modified from a pre-
vious speech enhancement development [3]. The modifica-
tion is made to reduce the distortion level from speech en-
hancement and was found useful for ASR task. The same en-
hancement filter is applied on noisy speech in the 1-channel
task. The back-end acoustic modelling follows a typical Kaldi
recipe [4] and unique DNN acoustic model is applied for all
the tasks [5]. In the decoding stages, LSTM LM [6] for re-
scoring is applied and semisupervied DNN adaptation [7] is
applied on individual speaker data. Consistent improvements
from baseline were obtained cross all three tasks. The major
contributions come from beamforming, LSTM LM re-scoring
and semisupervied DNN adaptation and additional improve-
ments were provided by post-processing enhancement and its
two-stage implementation. The submitted results for the real
test set were 5.00%, 8.32%, and 11.19% for the 6-channel,
2-channel, and 1-channel tasks, respectively. These results
significantly outperformed the baseline results of 11.51%,
16.58%, and 23.70% on the same datasets. The advantages
of our system is that it is applicable for universal situations
of environments and can be translated into real-time. We
also evaluated the data-driven BLSTM trained masking GEV
beamforming [8], proposed by Paderborn University (Ger-
many), with our back-end processing on the 6-channel data.
Although the masking GEV outperformed our front-end it re-
quires extra matching data to train putting a question on its
performance in an totally unknown and mismatch conditions.
Further studies are necessary to prove its practical value.

2. SYSTEM DESCRIPTIONS

The block diagram of our system is illustrated in Figure 1.
The highlighted yellow are the important modules which are
different from the baseline method.
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Fig. 1. Overview of our CHiME-4 ASR system.

2.1. Front-end processing

Our front-end processing includes two stages of weighted-
delayed-and-sum beamforming (WDAS) and a parametrized
single channel speech enhancement enabling optimization of
performances on the test data.

2.1.1. Beamforming

Time-domain weighted delay-and-sum (WDAS) method is
applied in the beamforming step.

1. The microphone signals are first alighted using time
difference of arrival (TDOA) which are estimated
through GCC-PHAT.

2. The reference channel is initialized as the channel with
the highest estimated SNR from channels and then it-
eratively tracking to the lowest negative TDOAs until
they turn positive. Note that since the SNR estimated
from channel number 2 is consistently bad, we have ex-
cluded this channel from our beamforming processing.

3. The weighted coefficients are calculated in two differ-
ent ways before getting averaged: (1) using channel co-
herence measurements; (2) using SNR estimation.

wi = αC
CHRi

N∑
j=1

CHRj

+ αS
SNRi

N∑
j=1

SNRj

, (1)

where the coherence measurements are calculated from

pair-wise cross-correlation coefficients [1], noted as

CHRi =
N∑
j 6=i

cij . (2)

The SNR in each channel is estimated and updated by
2 second segments using the algorithm in [2]. αC and
αS denote the weighting regularization coefficients be-
tween coherence and SNR measurements. Particularly,
we set both of them equal to 0.5.

4. Slower updating of WDAS weights, compared to pro-
vided baseline BeamformIt front-end [1] is imple-
mented using longer segments of 2 seconds

2.1.2. Post-processing filter

The advanatge of time-domain WDAS beamforming is that
it produces very low distortions in the output signal. How-
ever, the method is less effective in removing background
noise, particularly under low SNR conditions. Hence, post-
processing filter is introduced to partially solve the problem.
In this work, we applied the spectral estimation speech en-
hancement method introduced in a previous work [3]. This
method estimates the speech spectral amplitude using Max-
imum A Posterior (MAP) criteria using generalized gamma
distribution modelling of speech. While the method is effec-
tive in removing the background noise, it introduces distor-
tions which is harmful to ASR systems. To control the distor-
tion level, a simple modification has been applied and found
to be effective in applying this method for ASR under severe
noise conditions. It is done by introducing a rational power



order to the original gain filter

G → Gα, (3)

where the original gain filter is

G =
Ŝ

X
, (4)

with the MAP spectral amplitude estimation noted by [3]

Ŝ=argmaxS [p (S,X)] (5)

The distortion controlling parameter α is chosen between 0 <
α < 1. As closer to original α = 1, the post-processing filter
provides more noise removal but also more distortions. A
trade-off in middle way near to α = 0.5 seems always able to
boost the ASR performances. Particularly, α = 0.5 is used in
our experiments for CHiME-4 data.

2.2. Back-end processing

2.2.1. Data augmentation

The 6-channel official training data, including both simulated
and real noisy recordings provided by the challenge organiz-
ers, was used in the training [9].

2.2.2. Acoustic modelling

The acoustic modelling is carried out using standard Kaldi
recipe [4]. The processing includes MFCC feature extraction
followed by auxiliary HMM-GMM which provides speaker
adaptive transforms (SAT) and the initial alignments. The
DNN training is started with RBM initialization followed by
two rounds of 4-iterations cross-entropy fine-tuning runs. The
DNN training is finally carried out to deliver the acoustic
models using the sMBR optimization [5].

2.2.3. Language modelling

Default 3-grams LM was used in the decoding followed by
a re-scoring by provided 5-grams. Additional LSTM LM [6]
was trained with provided text extracted from WSJ corpus and
being used in the final re-scoring stage.

2.2.4. Decoding with semi-supervised DNN adaptation

In the decoding stages, the enhanced signals from front-end
processing were used to input to the ASR system. It first
passes to the HMM-GMM decoder to get the SAT-fMLLR
transforms. Then the transformed features are used in the first
pass of speaker independent DNN decoding using the default
3-gram LM followed by a 5-gram LM rescoring. From here,
two important modifications were made, compared to the
baseline method. First, instead of using RNN-LM re-scoring,
we adopt more advanced LSTM LM described above. Sec-
ondly, semi-supervised adaptation is utilised, on each indi-
vidual speaker data [8] using the best path state sequence and

Table 1. Average WER (%) for the tested single systems.

Track System Dev Test
real simu real simu

1ch
I2R-fb-2 6.08 7.33 11.19 10.87
I2R-fb 6.14 7.42 11.25 11.34

Noisy-I2Rb 6.15 7.60 13.05 12.89
Baseline 11.57 12.98 23.70 20.84

2ch
I2R-fb-2 4.32 5.10 8.32 7.57
I2R-fb 4.35 5.33 8.43 7.70

BeamformIt-I2Rb 4.76 6.62 9.37 8.48
Baseline 8.23 9.50 16.58 15.33

6ch
MaskBF-I2Rb 2.70 2.16 3.94 2.90

I2R-fb-2 3.18 3.39 5.00 4.97
I2R-fb 3.25 3.48 5.08 5.00

BeamformIt-I2Rb 6.35 6.14 6.44 6.06
Baseline 5.76 6.77 11.51 10.90

confidence measures, decoded from testing data, as the label
and weightings, respectively for additional iterations of DNN
fine-tuning. Five rounds of adaptations has been applied to
maximize the WER reduction though it normally converges
after just two rounds of adaptations.

3. EXPERIMENTAL EVALUATIONS

This section reports the results achieved by your system. Fol-
lowing methods have been evaluated and compared for both
1-channel, 2-channel and 6-channel tasks, respectively.

1. Baseline refers to the use of provided BeamformIt
front-end and also provided decoding script.

2. Noisy-I2Rb refers to the use of original noisy audio
and our developed decoding script. This is applied for
single channel task only.

3. I2R-fb refers to single system using our proposed
front-end and back-end processing, illustrated in Fig.
1.

4. I2R-fb-2 refers to our improved version combined two
different enhancement setting (α = 0.5 and α = 0.25).

5. MaskBF-I2Rb refers to the BLSTM trained masking
GEV beamforming front-end provided by Paderborn
University (Germany) [9] with our back-end process-
ing

3.1. Overall results

Table 1 reports the experimental evaluation results on both
four data sets from development and testing phases. We can
see that consistent and significant improvements were ob-
tained across all the datasets and tracks, from both back-
end and front-end components. Our best system (I2R-fb-2)



Table 2. WER (%) per environment for the best system.

Track Envir. Dev Test
real simu real simu

1ch

BUS 8.26 5.56 17.20 7.51
CAF 6.46 9.99 11.82 13.69
PED 3.64 5.58 7.70 10.27
STR 5.94 8.22 8.05 12.03

2ch

BUS 5.65 4.14 12.60 5.64
CAF 4.59 6.71 8.21 9.02
PED 2.73 3.91 4.07 4.89
STR 2.85 3.82 4.78 6.24

6ch

BUS 4.82 2.74 6.56 3.46
CAF 3.01 4.16 4.58 5.30
PED 2.04 2.85 4.07 4.89
STR 2.85 3.82 4.78 6.24

achieved approximately 12%, 8%, and 7% absolute WER
reductions for the real test sets in 1-channel, 2-channel and
6-channel tracks, respectively. The improvements were seen
consistently over datasets. The real test set is the most chal-
lenging set but the results are closing up on the 6-channel
data.

3.2. Back-end contributions

It can be seen that, our system achieved consistent improve-
ments cross all the datasets. Most significant improvements
come from our back-end processing which approximately
10%, 7% and 5% absolute accuracy gains when moving from
baseline to BeamformIt-I2Rb system. Among the back-end
processing components, LSTM LM re-scoring and Semi-
supervised DNN adaptation contributes the most.

3.2.1. Data augmentation

The multi-condition training using data augmentation has
proven to be very effective for the noisy ASR tasks. In
our experiments, we noticed nearly 2% additional improve-
ment compared to baseline training script just by using both
6-channel noisy data instead of single noisy in original script.
While it seems redundant in speech content, it may add some
more noise variation into the training which helps in deliver-
ing better models. Another explanation is adding more data
may help in DNN convergence which naturally requires suf-
ficient training data. This may have happened in this case be-
cause the size of data is significantly enlarged using 6-channel
data. But our effort to further improve the training by adding
more simulated data to the training was not successfully.

3.2.2. LSTM language model re-scoring

LSTM seems exclusively suitable for language modelling, as
it could extract temporal dependency from text data while
overcome fundamental vanish gradient problem in RNN

training hence deliver better prediction of text contents. Con-
sistent improvements of 2−3% WER reductions compared to
5-grams LM and 1 − 2% of the same compared to RNN LM
were seen in our experiments, respectively.

3.2.3. Semi-supervised DNN adaptations

Semi-supervised DNN adaptation has repeated its great con-
tributions in our experiments with consistent improvements
from 2 − 4% absolute WER reductions in both 1-channel,
2-channel and 6-channel tracks, respectively. Although the
default 5-round adaptation was applied, in most of cases, the
best results were converged after 1-2 steps.

3.3. Front-end contributions

Compared to provided BeamformIt baseline which stands
as a very good baseline method, our front-end processing
achieved consistent 1−2% absolute WER reductions for both
tracks of 1-channel, 2-channel, and 6-channel, respectively.

3.3.1. Speech enhancement

For the 1-channel tracks, the contribution of improvements
was fully made by the introduced speech enhancement.
Nearly 2% gain in WER reduction was obtained. Note that as
the original speech enhancement did not improve the WER,
the idea of gain modification to control the distortion has
shown to be a practical solution enabling applications of
speech enhancement methods in ASR. Although, a simplest
way of introducing a rational power order is applied in this
work, more sophisticated algorithms to address the introduced
idea could be more useful.

For the 2-channel and 6-channel tracks, as the beam-
forming already enhances the input signals, effect is post-
processing speech enhancement is less significant. Neverthe-
less, consistent improvements of 0.3−0.4% were seen on top
of beamforming method.

The post-processing speech enhancement module also
provides possibility for system combination in front-end level
while keeping acoustic models unchanged. That is more prac-
tical than fusion of totally different front-end and back-end
systems, often seen in the literature. In our experiments, sim-
ply combining two enhancement in lattice improved the per-
formances of the ASR system. Further studies in this direc-
tion are suggested.

3.3.2. Beamforming

Our beamforming method which had been developed and ap-
plied in our previous works [5] is similar to the BeamformIt
as the time-domain WDAS is applied in both cases. How-
ever, the way to calculate beamforming weights are different:
BeamfromIt uses only cross-correlation coefficients while we
use estimated SNR measurements on top of coherence mea-
surements. The SNR estimation is also used in our approach



for the channel selection. Our method uses slower updating
windows. Finally, our algorithm is totally real-time while the
BeamformIt requires batch processing. In CHiME-4 datasets,
our beamforming achieved about 0.6 − 1% improvement in
absolute WER reduction for 2-channel, and 6-channel tracks,
respectively.

We also compared our front-end method to the BLSTM
trained masking GEV beamforming provided by Paderborn
University (Germany)[8]. This method uses a parallel
noisy/clean training data to train a BLSTM network to get
the time-frequency mask before applying it into GEV beam-
forming which is a spatial filter in frequency domain. The
masking-GEV BF achieved great results by other participants
and also got the best result in our experiments when combin-
ing with our back-end processing. It achieved amazing 3.75%
WER on real test set with our back-end and is superior to our
front-end. However, this method requires training data which
is matching to testing in CHiME-4 and this is unknown how
it would perform in totally unknown environments. Further
investigations are required to confirm its practical value.

3.4. Performances over noise conditions

Breakdown of the best performed system on real test set, per
each environment condition is shown in Table 2. We can see
that, excepting the bus conditions, the results from each track
are quite clustered over four datasets. That means that the
simulation could be used to predict and improve the devel-
opments for the real conditions. That is a very good finding
for the industrial developments of far-field noisy ASR appli-
cations. For the bus condition, our system underperformed
in the real test set compared to the rest of conditions. Note
that the same things were not observed on the masking GEV
method which deliver similar results for all the conditions.
Further analyses should be carried out to find out the reasons
of that.

4. CONCLUSIONS

This paper reports developments and evaluation results of
I2R system for CHiME-4 challenge. We achieved consis-
tent improvements compared to provided baseline across both
tracks and datasets, in both front-end and back-end process-
ing. More significant improvement achieved in back-end
processing with LSTM language modelling for re-scoring
and semi-supervised DNN adaptation. Consistent improve-
ments were also obtained in front-end processing with co-
herence and SNR joint analytic based WDAS beamform-
ing and distortion-controlled speech enhancement as a post-
processing filter. The proposed front-end is a real-time pro-
cessing method.

5. REFERENCES

[1] Xavier Anguera, Chuck Wooters, and Javier Hernando,
Acoustic beamforming for speaker diarization of meet-
ings, IEEE Transactions on Audio, Speech and Language
Processing, vol. 15, no. 7, pp. 20112023, 2007.

[2] Tran Huy Dat, Kazuya Takeda, and Fumitada Itakura,
On-line gaussian mixture modeling in the log-power
domain for signal-tonoise ratio estimation and speech
enhancement, Speech Communication, vol. 48-1, pp.
15151527, 2006.

[3] Tran Huy Dat, Kazuya Takeda, and Fumitada Itakura,
Gamma modeling of speech power and its on-line esti-
mation for statistical speech enhancement, IEICE Trans-
actions on Information and Systems, vol. E89D(3), pp.
10401049, 2006.

[4] Daniel Povey at el., The kaldi speech recognition toolkit,
in Proceedings of IEEE workshop on automatic speech
recognition and understanding (ASRU) 2011, IEEE.

[5] Jonathan W.D. and H.D. Tran, Single and multi-channel
approaches for distant speech recognition under noisy re-
verberant conditions: i2rs system description for the as-
pire challenge, in Proceedings of IEEE workshop on au-
tomatic speech recognition and understanding (ASRU)
2015, IEEE, 2015.

[6] Wojciech Zaremba, Ilya Sutskever,and Oriol Vinyals
Recurrent neural network regularization, CoRR, vol.
abs/1409.2329, 2014.

[7] Mirko Hannemann Karel Vesely and Lukas Burget,
Semisupervised training of deep neural networks, in Pro-
ceedings of IEEE workshop on automatic speech recog-
nition and understanding (ASRU). 2011, IEEE, 2013.

[8] Jahn Heymann, Lukas Drude, Reinhold Haeb-Umbach,
Neural network based spectral mask estimation for acous-
tic beamforming”, Proceedings of ICASSP 2016, IEEE,
2016.

[9] Emmanuel Vincent, Shinji Watanabe, Jon Barker, and Ri-
card Marxer, An analysis of environment, microphone
and data simulation mismatches in robust speech recog-
nition, Computer Speech and Language, 2016, 2016.


